Những câu hỏi liên quan
SH
Xem chi tiết
H24
Xem chi tiết
GB
6 tháng 5 2022 lúc 21:47

Cho phương trình x2 + 2 ( m + 3 )x + 2m - 11

a) Ta có:

△' = b'- ac = ( m + 3 )2 - 1 . ( 2m - 11 ) 

m2 - 6m + 9 - 2m + 11

△' = b'- ac = 

Bình luận (0)
ND
Xem chi tiết
PB
Xem chi tiết
CT
22 tháng 8 2019 lúc 3:21

a) Với m= 2, ta có phương trình:  x 2 + 2 x − 3 = 0

Ta có:  a + b + c = 1 + 2 − 3 = 0                                                             

Theo định lý Viet, phương trình có 2 nghiệm: 

x 1 = 1 ;   x 2 = − 3 ⇒ S = 1 ;   − 3 .                                                                             

b) Chứng minh rằng phương trình luôn có nghiệm  ∀ m .

Ta có:  Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ;    ∀ m                                           

Vậy phương trình luôn có nghiệm  ∀ m .                                              

c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m                                                             

Ta có:

x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0                  

Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ;   m 2 = 3 2                                                  

Vậy m= -1 hoặc m= 3/2 

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 10 2019 lúc 16:07

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

Bình luận (0)
LL
Xem chi tiết
AH
1 tháng 4 2021 lúc 1:47

PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?

PT cuối cũng bị lỗi.

Bạn xem lại đề!

Bình luận (1)
AH
1 tháng 4 2021 lúc 19:27

Lời giải:

a) 

Ta có: $\Delta'=m^2-(2m-2)=m^2-2m+2=(m-1)^2+1>0$ với mọi $m\in\mathbb{R}$

Do đó pt luôn có 2 nghiệm phân biệt $x_1,x_2$ với mọi $m\in\mathbb{R}$

b) 

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2m\\ x_1x_2=2m-2\end{matrix}\right.\)

Để $x_1^2+x_2^2-3x_1x_2=4$

$\Leftrightarrow (x_1+x_2)^2-5x_1x_2=4$

$\Leftrightarrow (-2m)^2-5(2m-2)=4$

$\Leftrightarrow 4m^2-10m+6=0$

$\Leftrightarrow 2m^2-5m+3=0$

$\Leftrightarrow (m-1)(2m-3)=0$

$\Rightarrow m=1$ hoặc $m=\frac{3}{2}$ (đều thỏa mãn)

 

Bình luận (0)
HN
Xem chi tiết
H24
13 tháng 5 2021 lúc 20:27

PT có 2 nghiệm `x_1,x_2`

`<=>\Delta>0`

`<=>(2m+3)^2-4m>0`

`<=>4m^2+12m+9-4m>0`

`<=>4m^2+8m+9>0``

`<=>(2m+2)^2+5>0`(luôn đúng)

Áp dụng vi-ét:$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}$
$x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1.x_2\\=(2m+3)^2-2m\\=4m^2+12m+9-2m\\=4m^2+10m+9\\=(2m+\dfrac52)^2+\dfrac{11}{4} \geq \dfrac{11}{4}$
Dấu "=" `<=>2m=-5/2<=>m=-5/4`

Bình luận (0)
H24
Xem chi tiết
AH
22 tháng 5 2021 lúc 2:44

Lời giải:

Để pt có 2 nghiệm thì:

$\Delta'=(m-1)^2+2m-5\geq 0$

$\Leftrightarrow m^2-4\geq 0$

$\Leftrightarrow m\geq 2$ hoặc $m\leq -2$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(1-m)\\ x_1x_2=-2m+5\end{matrix}\right.\)

\(2x_1+3x_2=-5\)

\(\Leftrightarrow 2(x_1+x_2)+x_2=-5\Leftrightarrow 4(1-m)+x_2=-5\)

\(\Leftrightarrow x_2=4m-9\)

\(x_1=2(1-m)-x_2=11-6m\)

$x_1x_2=-2m+5$

$\Leftrightarrow (4m-9)(11-6m)=-2m+5$

Giải pt này suy ra $m=2$ hoặc $m=\frac{13}{6}$ (đều thỏa mãn)

 

Bình luận (0)
HN
Xem chi tiết
TH
5 tháng 2 2023 lúc 16:56

Để phương trình (1) có nghiệm thì:

\(\Delta'\ge0\Rightarrow\left(m-1\right)^2-\left(2m-5\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-2m+5\ge0\)

\(\Leftrightarrow\left(m-2\right)^2+2\ge0\) (luôn đúng)

Vậy với \(\forall m\) thì phương trình (1) luôn có nghiệm.

Theo định lí Vi-et cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

Ta có: \(x_1< 2< x_2\Rightarrow\left\{{}\begin{matrix}x_1-2< 0\\x_2-2>0\end{matrix}\right.\)

\(\Rightarrow\left(x_1-2\right)\left(x_2-2\right)< 0\)

\(\Rightarrow x_1x_2-2\left(x_1+x_2\right)+4< 0\)

\(\Rightarrow2m-5-2.2\left(m-1\right)+4< 0\)

\(\Rightarrow2m-5-4m+4+4< 0\)

\(\Rightarrow-2m+3< 0\)

\(\Rightarrow m>\dfrac{3}{2}\)

Bình luận (0)