Với x=... thì phương trình 2m2x2-(3m-1)x-2m2-3m+1=0 thỏa mãn với mọi giá trị của m.
Cho phương trình x² – 2(m – 1)x + m² – 3m = 0. Tìm giá trị của m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn x2 + 3x1 = –2. Giups với mn ơi !!!
Cho phương trình: x2 - 2(m - 1)x + m2 - 3m = 0 (1) với m là tham số.
a) Giải phương trình (1) khi m = 0.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn điều kiện: |x1| - 4 ≥ - |x2|
a) Thay m=0 vào phương trình (1), ta được:
\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: Khi m=0 thì S={0;-2}
Cho phương trình ẩn x : x2 - (3m - 2)x + 3m - 3 = 0
a) Chứng tỏ phương trình luôn có 2 nghiệm x1 ; x2 với mọi giá trị của m
b) Tìm giá trị của m thỏa hệ thức : x12 + x22 = 13 - x1x2
Mọi người giải nhanh giúp mình với ạ.
Cho phương trình 3 x 2 + 2 ( 3 m - 1 ) x + 3 m 2 - m + 1 = 0 . Với giá trị nào của m thì phương trình vô nghiệm?
cho phương trình : x2-4x+m+1=0 (1) (với m là tham số). tìm các giá trị của m để phương trình (1) có hai nghiệp x1,x2 , thỏa mãn |x1-x2|= 3m-4
Ta có: \(x^2-4x+m+1=0\)
a=1; b=-4; c=m+1
\(\Delta=b^2-4ac\)
\(=\left(-4\right)^2-4\cdot1\cdot\left(m+1\right)\)
\(=16-4m-4\)
\(=-4m+12\)
Để phương trình (1) có hai nghiệm x1,x2 thì \(\Delta\ge0\)
\(\Leftrightarrow-4m+12\ge0\)
\(\Leftrightarrow-4m\ge-12\)
hay \(m\le3\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m+1}{1}=m+1\end{matrix}\right.\)
Ta có: \(\left|x_1-x_2\right|=3m-4\)
\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=3m-4\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=3m-4\)
\(\Leftrightarrow\sqrt{4^2-4\left(m+1\right)}=3m-4\)
\(\Leftrightarrow\sqrt{16-4m-4}=3m-4\)
\(\Leftrightarrow\sqrt{-4m+12}=3m-4\)
\(\Leftrightarrow-4m+12=\left(3m-4\right)^2\)
\(\Leftrightarrow-4m+12=9m^2-24m+16\)
\(\Leftrightarrow9m^2-24m+16+4m-12=0\)
\(\Leftrightarrow9m^2-20m+4=0\)(2)
a=9; b=-20; c=4
\(\Delta=b^2-4ac\)
\(=\left(-20\right)^2-4\cdot9\cdot4=400-144=256\)
Vì \(\Delta>0\) nên phương trình (2) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{20-16}{18}=\dfrac{4}{18}=\dfrac{2}{9}\left(nhận\right)\\m_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{20+16}{18}=\dfrac{36}{18}=2\left(nhận\right)\end{matrix}\right.\)
Vậy: \(m\in\left\{\dfrac{2}{9};2\right\}\)
Cho hệ phương trình :\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\) (m là tham số)
Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x + y < 0
Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):
$m(m+1-my)+y=3m-1$
$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$
$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$
Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất
Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$
$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$
Có:
$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$
$\Leftrightarrow -1< m< 0$
Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.
Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)(m là tham số)
Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y<0
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0
với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x ∈ ( - ∞ , 0 )
A. m > 2 + 2 3 3
B. m > 2 - 2 3 3
C. m ≥ 2 - 2 3 3
D. m ≥ - 2 - 2 3 3
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0 với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho có nghiệm đúng với mọi x ∈ - ∞ ; 0
A. m ≥ 2 - 2 3 3
B. m > 2 - 2 3 3
C. m > 2 + 2 3 3
D. m ≥ - 2 - 2 3 3
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy