Những câu hỏi liên quan
TG
Xem chi tiết
NL
22 tháng 1 2024 lúc 23:29

Đặt \(x-1=t\Rightarrow x=t+1\)

\(A=\dfrac{2\left(t+1\right)^2-6\left(t+1\right)+5}{t^2}=\dfrac{2t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+2=\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

\(A_{min}=1\) khi \(t=1\Rightarrow x=2\)

Bình luận (0)
H24
Xem chi tiết
XO
21 tháng 12 2021 lúc 18:34

\(S=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{2x^2-4x+2+x^2-4x+4}{x^2-2x+1}\)

\(=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

=> MIN S = 2

Dấu "=" xảy ra <=> x - 2 = 0

<=> x = 2

Vậy Min S = 2 khi x = 2

Bình luận (0)
BC
Xem chi tiết
H24
2 tháng 9 2017 lúc 22:12

a) \(A=2x^2\)\(+\)\(10\)\(-\)\(1\)

\(=2\left(x^2+5x-\frac{1}{2}\right)\)

\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(=2\left(x+\frac{5}{2}\right)^2\)\(=\frac{27}{2}\)> hoặc = \(\frac{-27}{2}\)\(=-13,5\)

Dấu bằng xảy ra  \(\Leftrightarrow\)\(x+\frac{5}{2}=0\)

                                    \(x=\frac{-5}{2}=-2,5\)

Vậy GTLN của A bằng -13,5 khi x = -2,5

b)  \(B=3x-2x^2\)

\(=\)\(-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}\right)\)

\(=-2\left[\left(x-\frac{3}{4}\right)^2-\frac{9}{16}\right]\)

\(=-2\left(x-0,75\right)^2\)\(+\)\(\frac{9}{8}\)< hoặc = \(\frac{9}{8}\)\(=\)\(1,125\)

Dấu bằng xảy ra  \(\Leftrightarrow\)\(x-0,75=0\)

                                    \(x=0,75\)

Vậy GTLN của B bằng 1,125 khi x = 0,75

Bình luận (0)
PL
3 tháng 9 2017 lúc 7:29

kjkkm

Bình luận (0)
HB
3 tháng 9 2017 lúc 18:19

=-2,5 đó

Bình luận (0)
H24
Xem chi tiết
LD
3 tháng 8 2017 lúc 19:45

a) Ta có : \(x^2+x+\frac{2}{3}\)

\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{5}{12}\)

\(=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{5}{12}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\)

Mà ; \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\ge\frac{5}{12}\forall x\)

Vậy GTNN của biểu thức là : \(\frac{5}{12}\) khi \(x=-\frac{1}{2}\)

Bình luận (0)
Xem chi tiết
LL
9 tháng 10 2021 lúc 20:58

\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2018\)

\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2018\)

\(=\left(2x^2-3x\right)^2-1+2018\)

\(=\left(2x^2-3x\right)^2+2017\ge2017\)

\(minA=2017\Leftrightarrow2x^2-3x=0\)

\(\Leftrightarrow x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

Bình luận (0)
Xem chi tiết
NM
9 tháng 10 2021 lúc 17:09

\(x+\dfrac{1}{x}=3\Leftrightarrow\left(x+\dfrac{1}{x}\right)^3=27\\ \Leftrightarrow x^3+\left(\dfrac{1}{x}\right)^3+3x\cdot\dfrac{1}{x}\left(x+\dfrac{1}{x}\right)=27\\ \Leftrightarrow x^3+\dfrac{1}{x^3}+3\cdot3=27\\ \Leftrightarrow x^3+\dfrac{1}{x^3}=18\)

Bình luận (0)
PB
Xem chi tiết
AH
19 tháng 10 2019 lúc 8:58

Lời giải:

Ta có:

\(A=1-\sqrt{1-6x+9x^2}+(3x-1)^2=1-\sqrt{(3x-1)^2}+(3x-1)^2\)

\(=1-|3x-1|+|3x-1|^2=1-t+t^2\) (đặt \(t=|3x-1|, t\geq 0)\)

\(=(t-\frac{1}{2})^2+\frac{3}{4}\)

Ta thấy \((t-\frac{1}{2})^2\geq 0, \forall t\geq 0\)

\(\Rightarrow A=(t-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)

Vậy $A$ đạt min bằng $\frac{3}{4}$. Giá trị này đạt được tại $t=\frac{1}{2}\Leftrightarrow |3x-1|=\frac{1}{2}$

\(\Leftrightarrow \left[\begin{matrix} 3x-1=\frac{1}{2}\\ 3x-1=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=\frac{1}{6}\end{matrix}\right.\)

Bạn chú ý lần sau không đăng 1 bài nhiều lần tránh làm loãng box toán.

Bình luận (0)
 Khách vãng lai đã xóa
NJ
Xem chi tiết
LP
17 tháng 2 2020 lúc 13:35

A=MIN=0 vì lx-2l=0 hoặc>0

                    l2x-3l=0 hoặc >0

                    l3x-4l=0 hoặc >0

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết