\(2\cdot\left(\dfrac{1}{2}x-\dfrac{1}{3}\right)=\dfrac{1}{4}\)
1: rút gọn rồi tính
\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right)\) : \(\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)
2: tìm x: \(3\cdot\left(4-x\right)+\left(x+2\right)\cdot\left(1+2x\right)=7\cdot\left(1+x\right)-2x\cdot\left(2-x\right)\)
3: tìm x: \(\dfrac{2\cdot\left(1+x\right)}{3}-\dfrac{5\cdot\left(2-x\right)}{6}=1\dfrac{1}{3}-\dfrac{3\cdot\left(2x+3\right)}{4}-1\dfrac{1}{2}\cdot\left(x+1\right)\)
4: cho a= \(3+3^{2^3}+3^3+3^4+...+3^{360}\)
Bài 1:
\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right):\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)
\(=\left(-\dfrac{9}{5}-\dfrac{12}{5}-\dfrac{7}{3}\right):\left(\dfrac{9}{20}-\dfrac{5}{12}+-3\right)\)
\(=\left(-\dfrac{27}{15}-\dfrac{36}{15}-\dfrac{21}{15}\right):\left(\dfrac{27}{60}-\dfrac{25}{60}+-3\right)\)
\(=\left(-\dfrac{28}{5}\right):\left(-\dfrac{89}{30}\right)\)
\(=\left(-\dfrac{28}{5}\right).\left(-\dfrac{30}{89}\right)\)
\(=\dfrac{168}{89}\)
1/S=\(\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)\)
2/B=\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2007}\right)\)
3/C=\(\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{100^2}{99\cdot101}\)
1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)
2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)
1: \(\dfrac{2\cdot\left(x+2\right)}{3}-\dfrac{5\cdot\left(x-1\right)}{4}=\dfrac{3\cdot\left(5-x\right)}{2}-1\dfrac{1}{2}\cdot\left(2x+3\right)\)
\(\Leftrightarrow\dfrac{2}{3}x+\dfrac{4}{3}-\dfrac{5}{4}x+\dfrac{5}{4}=\dfrac{15}{2}-\dfrac{3}{2}x-\dfrac{3}{2}\left(2x+3\right)\)
\(\Leftrightarrow x\cdot\dfrac{-7}{12}+\dfrac{31}{12}=\dfrac{-15}{2}x+3\)
=>83/12x=5/12
hay x=5/83
Giải phương trình
\(1,\dfrac{x^2-2x-3}{x-1}+\dfrac{x^2-8x+20}{x-4}=\dfrac{x^2-4x+6}{x-2}+\dfrac{x^2-6x+12}{x-3}\)
\(2,\left(1+\dfrac{1}{1\cdot3}\right)\cdot\left(1+\dfrac{1}{2\cdot4}\right)\cdot\left(1+\dfrac{1}{3\cdot5}\right)\cdot...\cdot[1+\dfrac{1}{x\cdot\left(x+2\right)}]=\dfrac{31}{16}\left(x\in N\right)\)
pt nào cho thì mới biết chứ bạn
Tìm $x$, biết :
a) $\left(\dfrac{1}{2}+1,5\right) \cdot x=\dfrac{1}{5}$
b) $\left(-1 \dfrac{3}{5}+x\right): \dfrac{12}{13}=2 \dfrac{1}{6}$
c) $\left(x: 2 \dfrac{1}{3}\right) \cdot \dfrac{1}{7}=\dfrac{-3}{8}$
d) $\dfrac{-4}{7} \cdot x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1 \dfrac{2}{3}\right)$
\(a)\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\)
\(\Rightarrow2x=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{10}\)
\(b)\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=\dfrac{13}{6}.\dfrac{12}{13}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=2\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(c)\left(x:2\dfrac{1}{3}\right).\dfrac{1}{7}=-\dfrac{3}{8}\)
\(\Leftrightarrow x:\dfrac{7}{3}=-\dfrac{3}{8}:\dfrac{1}{7}\)
\(\Leftrightarrow x=-\dfrac{21}{8}.\dfrac{7}{3}\)
\(\Leftrightarrow x=-\dfrac{49}{8}\)
\(d)-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)
\(\Leftrightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)
\(\Leftrightarrow-\dfrac{4}{7}x=-\dfrac{59}{40}\)
\(\Leftrightarrow x=\dfrac{413}{160}\)
Tính:
\(N=\left(0,25\right)^{-1}\cdot\left(\dfrac{1}{4}\right)^{-2}\cdot\left(\dfrac{4}{3}\right)^{-2}\cdot\left(\dfrac{5}{4}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-3}\)\(N=\left(0,25\right)^{-1}\cdot\left(\dfrac{1}{4}\right)^{-2}\cdot\left(\dfrac{4}{3}\right)^{-2}\cdot\left(\dfrac{5}{4}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-3}\)
\(N=4\cdot16\cdot\dfrac{9}{16}\cdot\dfrac{4}{5}\cdot\dfrac{27}{8}=4\cdot9\cdot\dfrac{4}{5}\cdot\dfrac{27}{8}\)
\(=\dfrac{16}{5}\cdot\dfrac{243}{8}=\dfrac{486}{5}\)
a) \(\dfrac{\left(x+\dfrac{3}{4}\right)\cdot\dfrac{7}{2}-\dfrac{1}{6}}{-\left(\dfrac{4}{5}+\dfrac{1}{3}\right)\cdot\dfrac{1}{2}+1}=2\dfrac{33}{52}\)
b)\(\dfrac{\left(5-\dfrac{2}{7}\right)\cdot\dfrac{7}{9}\cdot\dfrac{3}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=5\dfrac{5}{21}\)
Giải:
a) \(\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{-\left(\dfrac{4}{5}+\dfrac{1}{3}\right).\dfrac{1}{2}+1}=2\dfrac{33}{52}\)
\(\Leftrightarrow\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{-\dfrac{17}{15}.\dfrac{1}{2}+1}=\dfrac{137}{52}\)
\(\Leftrightarrow\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{\dfrac{13}{30}}=\dfrac{137}{52}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}=\dfrac{137}{52}.\dfrac{13}{30}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}=\dfrac{137}{120}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}=\dfrac{137}{120}+\dfrac{1}{6}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}=\dfrac{157}{120}\)
\(\Leftrightarrow x+\dfrac{3}{4}=\dfrac{157}{120}:\dfrac{7}{2}\)
\(\Leftrightarrow x+\dfrac{3}{4}=\dfrac{157}{420}\)
\(\Leftrightarrow x=\dfrac{157}{420}-\dfrac{3}{4}\)
\(\Leftrightarrow x=-\dfrac{79}{210}\)
Vậy \(x=-\dfrac{79}{210}\).
b) \(\dfrac{\left(5-\dfrac{2}{7}\right).\dfrac{7}{9}.\dfrac{3}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=5\dfrac{5}{21}\)
\(\Leftrightarrow\dfrac{\left(5-\dfrac{2}{7}\right).\dfrac{7}{15}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\dfrac{\dfrac{33}{7}.\dfrac{7}{15}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\dfrac{\dfrac{11}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}=\dfrac{11}{5}:\dfrac{110}{21}\)
\(\Leftrightarrow\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}=\dfrac{21}{50}\)
\(\Leftrightarrow3x-\dfrac{5}{6}=\dfrac{21}{50}.\dfrac{1}{7}\)
\(\Leftrightarrow3x-\dfrac{5}{6}=\dfrac{3}{50}\)
\(\Leftrightarrow3x=\dfrac{3}{50}+\dfrac{5}{6}\)
\(\Leftrightarrow3x=\dfrac{67}{75}\)
\(\Leftrightarrow x=\dfrac{67}{75}:3\)
\(\Leftrightarrow x=\dfrac{67}{225}\)
Vậy \(x=\dfrac{67}{225}\).
Chúc bạn học tốt!
CÁC BẠN GIÚP MK NHA!!!
NGÀY MAI MK NỘP BÀI RỒI
AI TRẢ LỜI NHANH NHẤT
CHÍNH XÁC NHẤT VÀ RÕ RÀNG
THÌ MK TICK CHO NHA!!!
NHỚ TRẢ LỜI NHANH GIÙM MK NHA
m.n giúp mk ik nếu đúng mk sẻ giúp m.n trả ơn mờ nếu bn nghĩ bn trong hoàn cảnh này bn hiểu đc cảm giác của mk nếu bn là bn của mk thì xinh hãy giúp mk ik mờ
Tính giá trị các biểu thức sau theo cách hợp lí nhất.
a) $\mathrm{A}=\left(\dfrac{2}{7} \cdot \dfrac{1}{4}-\dfrac{1}{3} \cdot \dfrac{2}{7}\right):\left(\dfrac{2}{7} \cdot \dfrac{3}{9}-\dfrac{2}{7} \cdot \dfrac{2}{5}\right)$;
b) $\mathrm{B}=\dfrac{\left(\dfrac{1}{5}-\dfrac{2}{7}\right) \cdot \dfrac{3}{4}-\dfrac{3}{4} \cdot\left(\dfrac{1}{3}-\dfrac{2}{7}\right)}{\dfrac{1}{5} \cdot \dfrac{2}{7}-\dfrac{1}{3} \cdot\left(\dfrac{2}{7}+\dfrac{3}{9}\right)+\dfrac{3}{9} \cdot \dfrac{1}{5}} .$
tìm x:
\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{10}\right)=\dfrac{x}{2010}\)
Ta có:
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{10}\right)=\dfrac{x}{2010}\)
\(\Leftrightarrow\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{9}{10}=\dfrac{x}{2010}\)
\(\Leftrightarrow\dfrac{1.2.3.....9}{2.3.4.....10}=\dfrac{x}{2010}\)
\(\Leftrightarrow\dfrac{1}{10}=\dfrac{x}{2010}\)
\(\Leftrightarrow x=\dfrac{2010}{10}\)
\(\Leftrightarrow x=201\)
Vậy x = 201
\(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{10}\right)=\)\(\dfrac{x}{2010}\)
\(\Leftrightarrow\) \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}......\dfrac{9}{10}=\dfrac{x}{2010}\)
\(\Leftrightarrow\dfrac{1.2.3......9}{2.3.4.......10}=\dfrac{x}{2010}\)
\(\Leftrightarrow\dfrac{1}{10}=\dfrac{x}{2010}\)
\(\Leftrightarrow2010=10x\)
\(\Leftrightarrow x=\dfrac{2010}{10}\)
1, so sánh A;B biết: A=\(\left(\dfrac{\left(3\cdot\dfrac{2}{15}+\dfrac{1}{5}\right):2\cdot\dfrac{1}{2}}{\left(5\cdot\dfrac{3}{7}-2\cdot\dfrac{1}{4}\right):\dfrac{443}{56}}\right);B=\dfrac{1,2:\left(1\cdot\dfrac{1}{5}.1\cdot\dfrac{1}{4}\right)}{0,32+\dfrac{2}{25}}\)