(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=2^32-1
1*2*4+2*4*8+4*8*16+8*16*32/1*3*4+2*6*8+4*12*16+8*24*32
Tính
1*2*4+2*4*8+4*8*16+8*16*32/1*3*4+2*6*8+4*12*16+8*24*32 = 56744
1*2*4+2*4*8+4*8*16+8*16*32/1*3*4+2*6*8+4*12*16+8*24*32 = 56744
#nhớ tk
1/1-x +1/1+x +2/1+x^2 +4/1+x^4 +8/1+x^8 +16/1+x^16 = 32/1-x^32 c/m
\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\dfrac{32}{1-x^{32}}\)
(2+1)(2^2+1)(2^4 +1)(2^8+1)(2^16+1) - 2^32 = ?
(2+1)(2^2+1)(2^4 +1)(2^8+1)(2^16+1) - 2^32
=1.(2+1)(22+1)(24 +1)(28+1)(216+1) - 232
=(2-1).(2+1)(22+1)(24 +1)(28+1)(216+1) - 232
=(22-1)(22+1)(24 +1)(28+1)(216+1) - 232
=(24-1)(24 +1)(28+1)(216+1) - 232
=(28-1)(28+1)(216+1) - 232
=(216-1)(216+1) - 232
=232-1-232
=-1
(2+1 ) ( 2^2 + 1) ... (2^16 + 1) - 2^32
= 3 ( 2^2 + 1) ....( 2^16 + 1) -2^32
= ( 2^2 - 1)( 2^2 +1)....(2^16 + 1 ) - 2^32
= (2^4 - 1)( 2^4 + 1)( 2^8 + 1)( 2^16 + 1) - 2^32
= ( 2^8 - 1) ( 2^8 + 1) ( 2^16 - 1 ) - 2^32
= ( 2^ 16 - 1) (2^16 + 1) - 2^32
= 2^32 - 1 - 2^32
=-1
tìm x biết:
câu a: (2x+1)-4(x+2)^2=9
câu b: (x+3)^2-(x-4)(x+8)=1
câu c: (x+1)^3 - (x-1)^3 - 6(x-1)^2=-19
So sánh A và B biết: A=(2+1)×(2^2+1)×(2^4+1)×(2^8+1)×(2^16+1)×(2^16+1) và B=2^32
Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1< 2^{32}\)
\(\Leftrightarrow A< B\)
rút gọnA=(2+1)*(2^2+1)(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)
bài 6:tính nhanh
7)1\(^2\)-2\(^2\)+3\(^2\)-4\(^2\)+....-2004\(^2\)+2005\(^2\)
8) (2+1)(2\(^2\)+1)(2\(^4\)+1)(2\(^8\)+1)(2\(^{16}\)+1)(2\(^{32}\)+1)-2\(^{64}\)
7) \(A=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)
\(A=\left(-1\right)\left(1^{ }+2\right)+\left(-1\right)\left(3+4\right)+...+\left(-1\right)\left(2003+2004\right)+2005^2\)
\(A=-\left(1+2+3+...+2004\right)+2005^2\)
\(A=-\dfrac{2004.\left(2004+1\right)}{2}+2005^2\)
\(A=-1002.2005+2005^2\)
\(A=2005\left(2005-1002\right)=2005.1003=2011015\)
8) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\dfrac{\left(2^2-1\right)}{2-1}\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{64}-1\right)-2^{64}\)
\(B=-1\)
Thực hiện phép tính :
\(\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}+\frac{32}{1+x^{32}}\)
khó quá làm sao mà trả lời đc
tự đầu mình vắt óc mà suy nghĩ
tính: A=(2+1).(2^2+1).(2^4+1).(2^8+1).(2^16+1)+(2^32+1)-(2^64).
A = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) - 264
A = (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) - 264
A = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) - 264
A = (24 - 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) - 264
A = (28 - 1)(28 + 1)(216 + 1)(232 + 1) - 264
A = (216 - 1)(216 + 1)(232 + 1) - 264
A = (232 - 1)(232 + 1) - 264
A = 264 - 1 - 264
A = -1
so sánh M = 2^32 và N = (2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)(2^16 + 1)
\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)
=>N<M