Những câu hỏi liên quan
TA
Xem chi tiết
DH
6 tháng 2 2018 lúc 16:48

Ta có: \(M=\frac{2010a}{ab+2010a+2010}+\frac{b}{bc+b+2010}+\frac{c}{ac+c+1}\)

Thế: abc = 2010 ta được:

\(M=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{ab}{ab\left(c+1+ac\right)}+\frac{abc}{ab\left(ac+c+1\right)}\)

\(\Leftrightarrow\frac{a^2bc+ab+abc}{ab\left(1+ac+c\right)}=\frac{ab\left(ac+1+c\right)}{ab\left(1+ac+c\right)}=1\)

Vậy \(M=1\)

Bình luận (0)
Xem chi tiết
TN
30 tháng 3 2020 lúc 9:17

M=1 khi và chỉ khi abc=1

Bình luận (0)
 Khách vãng lai đã xóa
MN
30 tháng 3 2020 lúc 10:23

Áp dụng giả thiết từ đề bài :

\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(\Leftrightarrow M=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)

\(\Leftrightarrow M=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)

\(\Leftrightarrow M=\frac{1+b+bc}{b+1+bc}=1\)

Vậy M = 1

Bình luận (0)
 Khách vãng lai đã xóa
H24
30 tháng 3 2020 lúc 11:01

Ta có : \(M=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

                  \(=\frac{1}{ab+a+1}+\frac{1}{\frac{1}{a}+b+1}+\frac{1}{c+ca+a.b.c}\)

                  \(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{1}{c.\left(ab+a+1\right)}\)

                   \(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}\)

                    \(=\frac{a+ab+1}{a+ab+1}=1\)

Vậy M = 1

Bình luận (0)
 Khách vãng lai đã xóa
KT
Xem chi tiết
KL
22 tháng 12 2015 lúc 15:39

M=a/ab+a+1 +b/bc+b+1 +c/ca+c+1

=ac/abc+ca+c +abc/abc^2+abc+ac +c/ca+c+1

=ac/1+ca+c +1/c+1+ac +c/ca+c+1

=ac+1+c/1+ca+c

=1

Bình luận (0)
NP
Xem chi tiết
H24
4 tháng 3 2019 lúc 8:39

Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath

Học tốt=)

Bình luận (0)
NP
4 tháng 3 2019 lúc 19:46

tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2

Bình luận (0)
H24
4 tháng 3 2019 lúc 20:14

Ukm,mình không để ý.Sorry bn

Bình luận (0)
DY
Xem chi tiết
HT
Xem chi tiết
EC
Xem chi tiết
NH
13 tháng 12 2019 lúc 20:45

Tham khảo: Câu hỏi của Đậu Đình Kiên

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
DH
Xem chi tiết
BD
20 tháng 3 2018 lúc 20:30

\(P=\frac{a^3b^2c^2}{ab+a^2bc+abc}+\frac{ab^2c}{bc+b+abc}+\frac{abc^2}{ac+c+1}\)

\(=\frac{ }{ab\left(1+ac+c\right)}+\frac{ }{b\left(c+1+ac\right)}+\frac{ }{ac+c+1}\)

Bình luận (0)