Những câu hỏi liên quan
PN
Xem chi tiết
ND
19 tháng 3 2016 lúc 16:18

chứng minh chữ số tận cùng

Bình luận (0)
PN
19 tháng 3 2016 lúc 20:08

mình làm xong jui

Bình luận (0)
NH
Xem chi tiết
NM
16 tháng 10 2023 lúc 8:42

\(999993^{1999}=999993^{1996}.999993^3=\)

\(=\left(999993^4\right)^{499}.999993^3\)

\(999993^4\) có tận cùng là 1\(\Rightarrow\left(999993^4\right)^{499}\) có tận cùng là 1

\(999993^3\) có tận cùng là 7

\(\Rightarrow999993^{1999}\) có tận cùng là 7

Ta có

\(555557^{1997}=555557^{1996}.555557=\)

\(=\left(555557^4\right)^{499}.555557\)

\(555557^4\) có tận cùng là 1\(\Rightarrow\left(555557^4\right)^{499}\) có tận cùng là 1

\(555557\) có tận cùng là 7

\(\Rightarrow555557^{1997}\) có tận cùng là 7

\(\Rightarrow A\) có tận cùng là 0 \(\Rightarrow A⋮5\)

Bình luận (0)
NN
Xem chi tiết
NM
27 tháng 1 2022 lúc 18:49

quá ez, vì số dư 1 của số 9999931999 - số dư 1 của số 5555571997 = dư 0. Mà dư 0 là không dư nên chia hết cho 2 và 5. Cho mình 1 điểm nhé

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
LP
4 tháng 12 2015 lúc 12:43

Ta thấy:  9999931999 - 5555571997 có hiệu tận cùng là 2 vậy số trên ko bao giời chia hết cho 5

Bình luận (0)
IW
4 tháng 12 2015 lúc 12:44

Ta có: A=9999931999-5555571997

=> A=.....9-......7

=> A=.....2

Vậy A có tận cùng = 2

Mà số có tận cùng bằng 2 ko bao giờ chia hết cho 5

xem lại đề

Bình luận (0)
TL
Xem chi tiết
VD
17 tháng 11 2015 lúc 19:36

a, 995 - 984 + 973 - 962 
= (…9 ) - (…6) + (…3) - (…6)
= 0 
Số này có tận cùng bằng 0 nên chia hết cho 2 và 5                                                                                                 tick minh nha

Bình luận (0)
LP
17 tháng 11 2015 lúc 19:32

1d)Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5 
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Ta có: 9999931999 có chữ số tận cùng là 31999 = (34)499. 33 = 81499.27
Ta có: 9999931999=(74)499.7 =2041499.7 có chữ số tận cùng là 7 
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5. 

Bình luận (0)
LM
Xem chi tiết
SY
6 tháng 1 2015 lúc 16:25

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

Bình luận (0)
N1
10 tháng 7 2015 lúc 22:09

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

Bình luận (0)
NT
24 tháng 1 2016 lúc 15:26

a) a lẻ suy ra a+5 chia hết cho 2

a chẵn suy ra a+8 chia hết cho 2

Bình luận (0)
LB
Xem chi tiết
VP
20 tháng 9 2023 lúc 20:35

a) Ta có:

\(A=4+4^2+4^3+...+4^{90}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{89}+4^{90}\right)\)

\(A=20+4^2.\left(4+4^2\right)+...+4^{88}.\left(4+4^2\right)\)

\(A=20+4^2.20+...+4^{88}.20\)

\(A=20.\left(1+4^2+...+4^{88}\right)\)

Vì \(20⋮5\) nên \(20.\left(1+4^2+...+4^{88}\right)⋮5\)

Vậy \(A⋮5\)

____________

b) Ta có:

\(A=4+4^2+4^3+...+4^{90}\)

\(A=\left(4+4^2+4^3\right)+...\left(4^{88}+4^{89}+4^{90}\right)\)

\(A=84+...+4^{87}.\left(4+4^2+4^3\right)\)

\(A=84+...+4^{87}.84\)

\(A=84.\left(1+...+4^{87}\right)\)

Vì \(84⋮21\) nên \(84.\left(1+...+4^{87}\right)⋮21\)

Vậy \(A⋮21\)

\(#WendyDang\)

 

Bình luận (0)
VA
Xem chi tiết
HE
Xem chi tiết
TD
8 tháng 10 2018 lúc 13:59

Bạn tham khảo ở đây: Câu hỏi của Mật khẩu trên 6 kí tự - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
NL
Xem chi tiết
NN
9 tháng 11 2017 lúc 19:23

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

Bình luận (0)