Những câu hỏi liên quan
PB
Xem chi tiết
CT
21 tháng 3 2019 lúc 17:46

Chọn D.

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 12 2019 lúc 11:32

Bình luận (0)
NV
Xem chi tiết
PB
Xem chi tiết
CT
30 tháng 11 2017 lúc 9:31

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 9 2023 lúc 19:47

1) \(f\left(x\right)=2x-5\)

\(f'\left(x\right)=2\)

\(\Rightarrow f'\left(4\right)=2\)

2) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)

\(\Rightarrow y'=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)

3) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)

\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1.\left(x+9\right)}{\left(x-3\right)^2}+\dfrac{4}{2\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{12}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=2\left[\dfrac{6}{\left(x-3\right)^2}+\dfrac{1}{\sqrt[]{x}}\right]\)

\(\Rightarrow f'\left(1\right)=2\left[\dfrac{6}{\left(1-3\right)^2}+\dfrac{1}{\sqrt[]{1}}\right]=2\left(\dfrac{3}{2}+1\right)=2.\dfrac{5}{2}=5\)

Bình luận (0)
NT
15 tháng 9 2023 lúc 19:42

loading...  loading...  

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 12 2017 lúc 4:15

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 9 2019 lúc 14:36

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 6 2019 lúc 14:33

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 5 2018 lúc 11:33

Bình luận (0)