Những câu hỏi liên quan
BM
Xem chi tiết
EN
1 tháng 8 2021 lúc 13:30

a) Vì O cách đều 3 cạnh của tam giác nên OD = OE = OF
Áp dụng định lý Pytago vào tam giác vuông OBF và tam giác vuông ODB ta có:
BF=√OB2−OF2BF=OB2−OF2
BD=√OB2−OD2BD=OB2−OD2
Mà OF = OD nên BF = BD.
Tương tự áp dụng định lý Pytago vào tam giác vuông OEC và tam giác vuông ODC suy ra CE = CD
∆BAM có AB = BM nên ∆BAM là tam giác cân tại B ⇒ˆBAM=ˆBMA⇒BAM^=BMA^
Xét ∆BAM có BF = BD, BA = BM nên theo định lý Ta – lét ta có :
BFBA=BDBM⇒DF//AM⇒BFBA=BDBM⇒DF//AM⇒ DFAM là hình thang
Hình thang DFAM có ˆFAM=ˆAMDFAM^=AMD^ nên DFAM là hình thang cân
⇒{MF=ADAF=MD⇒{MF=ADAF=MD
∆ANC có AC = CN nên ∆ANC cân tại C⇒ˆCAN=ˆCNA⇒CAN^=CNA^
Xét ∆ANC có CE = CD, CA = CN nên theo định lý Ta – lét ta có :
CECA=CDCN⇒DE//AN⇒CECA=CDCN⇒DE//AN⇒ DEAN là hình thang
Hình thang DEAN có ˆCAN=ˆCNACAN^=CNA^ nên DEAN là hình thang cân
⇒{NE=ADAE=ND⇒{NE=ADAE=ND
⇒MF=NE⇒MF=NE
b) Xét ∆OEA và ∆ODN ta có :
⎧⎪⎨⎪⎩OE=ODˆOEA=ˆODNEA=DN{OE=ODOEA^=ODN^EA=DN⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA
Xét ∆OAF và ∆OMD ta có :
⎧⎪⎨⎪⎩AF=MDˆOFA=ˆODMOF=OD{AF=MDOFA^=ODM^OF=OD⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM
⇒OM=ON⇒OM=ON hay ∆MON cân tại O.

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
AV
Xem chi tiết
MD
14 tháng 2 2016 lúc 14:18

virgo gogogoggôg

Bình luận (1)
AS
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
MT
11 tháng 8 2018 lúc 14:14

A B C M N

a, Vì AB = AC => \(\Delta ABC\)cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)

Xét \(\Delta ABM\)và \(\Delta ACN\), ta có:

AB = AC (gt)

\(\widehat{ABC}=\widehat{ACB}\)(Chứng minh trên)

BM = CN (gt)

=> \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)

=> \(\widehat{BAM}=\widehat{CAN}\)

Vậy \(\widehat{BAM}=\widehat{CAN}\)

b,Vì \(\Delta ABM=\Delta ACN\)(Chứng minh trên) => AM = AN

=> \(\Delta AMN\)cân tại A

\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)

Vậy \(\widehat{AMN}=\widehat{ANM}\)

Bình luận (0)
NL
Xem chi tiết
NT
18 tháng 12 2022 lúc 12:56

Xét ΔCAB có CN/CA=CM/CB

nên NM//AB

Bình luận (0)