Cho nguyên hàm I = ∫ x 1 + 2 x 2 d x , khi thực hiện đổi biến số u = 1 + 2 x 2 thì ta được nguyên hàm theo biến số mới u là?
A. I = 1 2 ∫ u 2 d u
B. I = ∫ u 2 d u
C. I = 2 ∫ u d u
D. I = ∫ u d u
Cho hàm số f(x) có nguyên hàm là F(x) trên đoạn [1;2], biết F(2) = 1 và ∫ 1 2 F ( x ) d x = 5 . Tính I= ∫ 1 2 ( x - 1 ) f ( x ) d x
Cho hàm số f(x) có nguyên hàm là F(x) trên đoạn [1;2], biết F(2)=1 và ∫ 1 2 F ( x ) d x = 5 . Tính I = ∫ 1 2 ( x - 1 ) f ( x ) d x
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Hàm số nào bên dưới không là nguyên hàm của hàm số \(f\left(x\right)=\dfrac{x^2-1}{x^2}\)
A. F(x)=\(\dfrac{x^2-x+1}{x}\)
B. F(x)=\(\dfrac{x^2+1}{x}\)
C. F(x)=\(\dfrac{x^2+2x+1}{x}\)
D. F(x)\(=\dfrac{x^2-1}{x}\)
\(f\left(x\right)=\dfrac{x^2-1}{x^2}=1-\dfrac{1}{x^2}\)
\(\int f\left(x\right)dx=\int\left(1-\dfrac{1}{x^2}\right)dx=\int1dx-\int x^{-2}dx\)
=\(x-\dfrac{x^{-2+1}}{-2+1}+C=x-\dfrac{x^{-1}}{-1}+C=x+\dfrac{1}{x}+C\)
C=-1 ta được phương án A(ko tm câu hỏi)
C=0 ta được phương án B(ko tm câu hỏi)
C=2 ta được phương án C(ko tm câu hỏi)
=>chọn D
Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số f x = 1 1 + sinx
a) F(x) = 1 - cos x 2 + π 4
b) G(x) = 2 tan x 2
c) H(x) = ln(1 + sinx)
d) K(x) = 2 1 - 1 1 + tan x 2
a) F(x) = 1 - cos x 2 + π 4
d) K(x) = 2 1 - 1 1 + tan x 2
Cho F(x) là một nguyên hàm của hàm số f(x) trên đoạn [1;3], F(1)=3,F(3)=5 và ∫ 1 3 ( x 4 - 8 x ) f ( x ) dx = 12 . Tính I = ∫ 1 3 ( x 3 - 2 ) F ( x ) dx .
A. I= 147 2
B. I= 147 3
C. I= - 147 2
D. I= 147.
Cho hàm số F ( x ) = a x 3 + b x 2 + c x + 1 là một nguyên hàm của hàm số f(x) thỏa mãn f(1) = 2, f(2) = 3, f(3) = 4. Hàm số F(x) là
Chọn D.
Ta có
Vậy F(x)= 1 2 x 2 + x + 1
tìm nguyên hàm của (x+1)sin2x
tìm nguyên hàm của (x.sin(x/2)).(x.cos(x/2))
tìm nguyên hàm của 1/(x.lnx.ln(lnx))
c1; sin2x=1-cos2x/2 roi tung phan
c2 ;nhan vo duocx2(sinx/2 .cosx/2)=x2/2(sinx+cosx) lai nhan vo roi tung phan nhe
Tính nguyên hàm \(I=\int\frac{x^4+x^2+1}{x\left(x-2\right)\left(x+2\right)}\)
Đây là nguyên hàm của phân thức hữu tỉ không thực sự. Ta cần tách phần nguyên của phân thức
\(\frac{x^4+x^2+1}{x\left(x-2\right)\left(x+2\right)}=x+\frac{5x^2+1}{x\left(x-2\right)\left(x+2\right)}\)
Triển khai phân thức hữu tỉ thực sự thành tổng các phân thức đơn giản
\(\frac{5x^2+1}{x\left(x-2\right)\left(x+2\right)}=\frac{A_1}{x}+\frac{A_2}{x-2}+\frac{A_3}{x+2}\)
Ta tính được \(A_1=-\frac{1}{4},A_2=\frac{21}{8},A_3=\frac{21}{8}\)
Do đó :
\(I=\frac{1}{2}x^2+\int\frac{-\frac{1}{4}}{x}dx+\int\frac{\frac{21}{8}}{x-2}dx+\int\frac{\frac{11}{8}}{x+2}dx\)
\(=\frac{1}{2}x^2-\frac{1}{4}\ln\left|x\right|+\frac{21}{8}\ln\left|x-2\right|+\frac{21}{8}\ln\left|x+2\right|+C\)
Bài 1:Cho hàm số y=f(x)=x+3/x-2.Tìm số nguyên x để y có giá trị cùng là số nguyên
Bài 2:Cho hàm số y=f(x)=ax+b.Xác định a,b biết :f(1)=3;f(2)=1
Giúp mik nha