Những câu hỏi liên quan
TN
Xem chi tiết
NL
17 tháng 9 2021 lúc 15:35

ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow\sqrt{x-3}=2\sqrt{x^2-9}\)

\(\Leftrightarrow x-3=4\left(x-3\right)\left(x+3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4\left(x+3\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{4}\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
TN
Xem chi tiết
H24
1 tháng 12 2021 lúc 21:49

a,ĐKXĐ:\(x\ge2\)

\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)

b,ĐKXĐ:\(x\in R\)

\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

c, ĐKXĐ:\(x\ge0\)

\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)

 

Bình luận (0)
DH
Xem chi tiết
TS
Xem chi tiết
NT
3 tháng 4 2022 lúc 19:17

Đặt \(\left\{{}\begin{matrix}x-2y=a\\\dfrac{1}{2x+3y}=b\end{matrix}\right.\) 

hpt trở thành:

\(\left\{{}\begin{matrix}a+b=2\\2a+3b=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2x+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2\left(3+2y\right)+3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\6+4y+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\7y=-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2.-1\\y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy nghiệm hpt \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Bình luận (1)
NT
Xem chi tiết
NM
9 tháng 11 2021 lúc 7:23

\(1,\Delta=\left(-11\right)^2-4\cdot30=1\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11-1}{2}=5\\x=\dfrac{11+1}{2}=6\end{matrix}\right.\\ 2,\Delta=\left(-1\right)^2-4\left(-20\right)=81\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{81}}{2}=-4\\x=\dfrac{1+\sqrt{81}}{2}=5\end{matrix}\right.\\ 3,\Delta=14^2-4\cdot24=100\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14-\sqrt{100}}{2}=-12\\x=\dfrac{-14+\sqrt{100}}{2}=-2\end{matrix}\right.\\ 4,\Delta=8^2-4\left(-2\right)3=88\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-8-\sqrt{88}}{6}=\dfrac{-4+\sqrt{22}}{3}\\x=\dfrac{-8+\sqrt{88}}{6}=\dfrac{-4-\sqrt{22}}{3}\end{matrix}\right.\)

Bình luận (1)
HP
9 tháng 11 2021 lúc 7:33

1) Δ = (-11)2 -4.1.30 = 1 > 0 ⇒ Phương trình đã cho có hai nghiệm phân biệt, \(\sqrt{\Delta}\)=1.

x\(\dfrac{-\left(-11\right)+1}{2.1}\) = 6, x2 =  \(\dfrac{-\left(-11\right)-1}{2.1}\) = 5.

2) Δ = (-1)2 -4.1.(-20) = 81 > 0 ⇒ Phương trình đã cho có hai nghiệm phân biệt, \(\sqrt{\Delta}\)=9.

x\(\dfrac{-\left(-1\right)+9}{2.1}\) = 5, x2 =  \(\dfrac{-\left(-1\right)-9}{2.1}\) = -4.

3) Δ' = 72 -1.24 = 25 > 0 ⇒ Phương trình đã cho có hai nghiệm phân biệt, \(\sqrt{\Delta'}\)=5.

x\(\dfrac{-7+5}{1}\) = -2, x2 =  \(\dfrac{-7-5}{1}\) = -12.

4) Δ' = 42 -3.(-2) = 22 > 0 ⇒ Phương trình đã cho có hai nghiệm phân biệt, \(\sqrt{\Delta'}\)=\(\sqrt{22}\).

x\(\dfrac{-4+\sqrt{22}}{3}\), x2 =  \(\dfrac{-4-\sqrt{22}}{3}\).

Bình luận (0)
PA
Xem chi tiết
NH
Xem chi tiết
HH
6 tháng 8 2017 lúc 22:37

1)x^4+x^2-6x+1=0>>>x^4+4x^2+4-3x^2-6x-3=0>>>(x^2+2)^2=3(x-1)^2.

>>Sau đó giải bt.

2)Đặt x^2-x+1=a;x+1=b thì:x^3+1=ab.

Pt:2a+5b^2+14ab=0(tự giải nha)

Bình luận (0)
TN
Xem chi tiết
TC
29 tháng 11 2021 lúc 20:00

BT=\(\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\dfrac{12\left(3-\sqrt{3}\right)}{\left(\sqrt{3}+3\right)\left(3-\sqrt{3}\right)}\)

\(=\dfrac{2\left(\sqrt{3}-1\right)}{2}+\dfrac{2+\sqrt{3}}{4-3}+\dfrac{12\left(3-\sqrt{3}\right)}{9-3}\)

\(=\sqrt{3}-1+2+\sqrt{3}+2\left(3-\sqrt{3}\right)\)

\(=\sqrt{3}-1+2+\sqrt{3}+6-2\sqrt{3}=7\)

Bình luận (0)
HN
Xem chi tiết
NI
17 tháng 8 2021 lúc 21:22

\(a)\)

\(\frac{1}{x+1}-\frac{x-1}{x}=\frac{3x+1}{x\left(x+1\right)}\)

\(\Leftrightarrow x-x^2+1=3x+1\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(b)\)

\(\frac{\left(x+2\right)^2}{2x-3}-\frac{1}{1}=\frac{x^2+10}{2x-3}\)

\(\Leftrightarrow x^2+4x+4-2x-3=x^2+10\)

\(\Leftrightarrow x^2+2x+1=x^2+10\)

\(\Leftrightarrow2x-9=0\)

\(\Leftrightarrow2x=9\)

\(\Leftrightarrow x=\frac{2}{9}\)

Bình luận (0)
 Khách vãng lai đã xóa