Biến đổi biểu thức sina + 1 thành tích.
Biến đổi biểu thức sin a + 1 thành tích.
Biến đổi biểu thức sina+1 thành tích
A. sin a + 1 = 2 sin a 2 + π 4 cos a 2 - π 4
B. sin a + 1 = 2 cos a + π 2 sin a - π 2
C. sin a + 1 = 2 sin a + π 2 cos a - π 2
D. sin a + 1 = 2 cos a 2 + π 4 sin a 2 - π 4
Biến đổi thành tích biểu thức sau:
sin3x+sinx-sin2x+2(1-cosx)cosx
\(=2sin2x.cosx-2sinx.cosx+2cosx-2cos^2x\)
\(=2cosx\left(sin2x+1\right)-2cosx\left(sinx+cosx\right)\)
\(=2cosx\left(2sinx.cosx+sin^2x+cos^2x\right)-2cosx\left(sinx+cosx\right)\)
\(=2cosx\left(sinx+cosx\right)^2-2cosx\left(sinx+cosx\right)\)
\(=2cosx\left(sinx+cosx\right)\left(sinx+cosx-1\right)\)
Biến đổi tổng thành tích:
A= \(Sin^2a-Sin^2b\)
B=1 + Sina + Cosb
Lời giải:
$A=\sin ^2a-\sin ^2b=(\sin a-\sin b)(\sin a+\sin b)$
$B$ không biến đổi được. Bạn coi lại đề.
Biến đổi thành tích các biểu thức sau:
a. 1 – sinx
b. 1 + sinx
c. 1 + 2cosx
d. 1 – 2sinx
Sử dụng công thức biến đổi tích thành tổng và đặt \(a + b = u;\,\,a - b = v\) biến đổi các biểu thức sau thành tích: \(\cos u + \cos v;\,\,\cos u - \cos v;\,\,\sin u + \sin v;\,\,\sin u - \sin v\)
\(\begin{array}{l}1.\,\,\,\,\cos a.\cos b = \frac{1}{2}\left[ {\cos \left( {a + b} \right) + \cos \left( {a - b} \right)} \right] \Leftrightarrow 2\cos a.\cos b = \cos \left( {a + b} \right) + \cos \left( {a - b} \right)\\ \Leftrightarrow 2\cos \frac{{u + v}}{2}.\cos \frac{{u - v}}{2} = \cos u + \cos v\\2.\,\,\,\,\sin a.\sin b = - \frac{1}{2}.\left[ {\cos \left( {a + b} \right) - \cos \left( {a - b} \right)} \right] \Leftrightarrow - 2.\sin a.\sin b = \cos \left( {a + b} \right) - \cos \left( {a - b} \right)\\ \Leftrightarrow - 2.\sin \frac{{u + v}}{2}.\sin \frac{{u - v}}{2} = \cos u - \cos v\\3.\,\,\,\,\sin a.\cos b = \frac{1}{2}\left[ {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right] \Leftrightarrow 2\sin a.\cos b = \sin \left( {a + b} \right) + \sin \left( {a - b} \right)\\ \Leftrightarrow 2\sin \frac{{u + v}}{2}.\cos \frac{{u - v}}{2} = \sin u + \sin v\\4.\,\,\,\,\sin \left( {a + b} \right) - \sin \left( {a - b} \right) = \sin a.\cos b + \cos a.\sin b - \sin a.\cos b + \cos a.\sin b = 2\cos a.\sin b\\ \Leftrightarrow \sin u - \sin v = 2.\cos \frac{{u + v}}{2}.\sin \frac{{u - v}}{2}\end{array}\)
Biến đổi tổng thành tích:
A= Sina + Sinb + Sin(a+b)
\(A=2sin\dfrac{a+b}{2}cos\dfrac{a-b}{2}+2sin\dfrac{a+b}{2}cos\dfrac{a+b}{2}\)
\(=2sin\dfrac{a+b}{2}\left(cos\dfrac{a+b}{2}+cos\dfrac{a-b}{2}\right)\)
\(=2sin\dfrac{a+b}{2}.2cos\dfrac{a}{2}cos\dfrac{b}{2}\)
\(=4sin\dfrac{a+b}{2}cos\dfrac{a}{2}cos\dfrac{b}{2}\)
Biến đổi thành tích biểu thức B= cos2x + cosx -sin x
B=cos^2x-sin^2x+cosx-sinx
=(cosx-sinx)(cosx+sinx)+(cosx-sinx)
=(cosx-sinx)(cosx+sinx+1)
Cho biểu thức P = sin5 x+sin3 x. Biến đổi biểu thức P thành tích ta được kết quả là:
A. P = 2sin4x.cosx
B. P = sin8x
C. P = 8sinx
D. P = 2sin8x.cos2 x