Tìm GTLN của các biểu thức:
A=13-(x+5)2
B=-3-(x+2)2
Bài 5: Tìm GTNN của các biểu thức sau:
a) A = x^2 – 4x + 9
b) B = x^2 – x + 1
c) C = 2x^2 – 6x
Bài 4: Tìm GTLN của các đa thức:
a) M = 4x – x^2 + 3
b) N = x – x^2
c) P = 2x – 2x^2 – 5
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
TÌM GTLN CỦA BIỂU THỨC:A=3/(X+2)^2+4
tìm GTNN của biểu thức:a)A= 1,5+/3,4-x/ b)B= -3/4 +/5+x/ c) C= -1/ /2x+6/+1
tìm GTLN của biểu thức:a) A=5,5-/2x-1,5/ b)B=10-4./x-2/ c) A=x-/x/
Tìm GTLN của biểu thức:
a. \(A=\dfrac{1}{x-\sqrt{x}+1}\)
b. \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
Tìm giá trị nhỏ nhất của biểu thức:
a)A=x^2 + 4x - 2
b)B=2x^2 - 4x + 3
c)C=x^2 + y^2 - 4x + 2y + 5
a) A = x2 + 4x - 2 = x2 + 4x + 4 - 6 = (x + 2)2 - 6
(x + 2)2 ≥ 0 => A ≥ -6 => GTNN của A là -6, xảy ra khi x = 2
`a)A=x^2+4x-2`
`A=x^2+4x+4-6=(x+2)^2-6`
Vì `(x+2)^2 >= 0 AA x`
`<=>(x+2)^2-6 >= -6 AA x`
Hay `A >= -6 AA x`
Dấu "`=`" xảy ra`<=>(x+2)^2=0<=>x=-2`
Vậy `GTN N` của `A` là `-6` khi `x=-2`
________________________________________________
`b)B=2x^2-4x+3`
`B=2(x^2-2x+3/2)`
`B=2(x^2-2x+1)+1=2(x-1)^2+1`
Vì `2(x-1)^2 >= 0 AA x`
`<=>2(x-1)^2+1 >= 1 AA x`
Hay `B >= 1 AA x`
Dấu "`=`" xảy ra `<=>(x-1)^2=0<=>x=1`
Vậy `GTN N` của `B` là `1` khi `x=1`
__________________________________________________
`c)C=x^2+y^2-4x+2y+5`
`C=x^2-4x+4+y^2+2y+1`
`C=(x-2)^2+(y+1)^2`
Vì `(x-2)^2 >= 0 AA x` và `(y+1)^2 >= 0 AA y`
`=>(x-2)^2+(y+1)^2 >= 0 AA x,y`
Hay `C >= 0 AA x,y`
Dấu "`=`" xảy ra`<=>{((x-2)^2=0),((y+1)^2=0):}`
`<=>{(x=2),(y=-1):}`
Vậy `GTN N` của `C` là `0` khi `x=2`,y=-1
Câu 1. Khai triển các biểu thức:
a) (a-b+c)2 b) (a+2b-c)2
c) (2a-b-c)2
Câu 2. Rút gọn biểu thức:
a) A=(x-y)2+(x+y)2
b) B=(2x-1)2-2(2x-3)2+4
Câu 3. Tính nhanh:
a) 492 b) 512
c) 99.100
Câu 4. Tìm x, biết:
a) 16x2-(4x-5)2=15 b) (2x+1)(1-2x)+(1-2x)2=18
c) (x-5)2-x(x-4)=9 d) (x-5)2+(x-4)(1-x)=0
Tách ra mỗi câu một lần.
Dài quá không ai làm đâu.
Nhìn nản lắm.
Câu 3:
a: \(49^2=2401\)
b: \(51^2=2601\)
c: \(99\cdot100=9900\)
Cho hai biểu thức:
A = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\) và B = \(\dfrac{3}{\sqrt{x}+2}-\dfrac{8+2\sqrt{x}}{x-4}\) với \(x\ge0;x\ne4\)
Biểu thức B sau khi thu gọn được B = \(\dfrac{1}{\sqrt{x}+2}\). Tìm các giá trị của x để \(P=3A+2B\) đạt GTNN
Ta có : \(P=3A+2B\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{3}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+3}{\sqrt{x}+2}.\)
\(\Rightarrow P=\dfrac{2\left(\sqrt{x}+2\right)-1}{\sqrt{x}+2}=2-\dfrac{1}{\sqrt{x}+2}\)
Do \(x\ge0\Rightarrow\sqrt{x}+2\ge0\)
\(\Rightarrow-\dfrac{1}{\sqrt{x}+2}\ge-1\)
\(\Rightarrow P=2-\dfrac{1}{\sqrt{x}+2}\ge-1+2=1.\)
Vậy : \(MinP=1.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=0.\)
Tìm GTLN của biểu thức:A=\(\frac{2}{x^2+x+1}\)
Tìm GTLN của các biểu thức sau
a)A=-x^2-4x-2
b)B=-2x^2-3x+5
c)C=(2-x)(x+4)
d)D=-8x^2+4xy-y^2+3
a: \(A=-x^2-4x-2\)
\(=-x^2-4x-4+2\)
\(=-\left(x^2+4x+4\right)+2\)
\(=-\left(x+2\right)^2+2< =2\forall x\)
Dấu '=' xảy ra khi x+2=0
=>x=-2
b: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}< =\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x+\dfrac{3}{4}=0\)
=>\(x=-\dfrac{3}{4}\)
c: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-x^2-2x-1+9\)
\(=-\left(x^2+2x+1\right)+9\)
\(=-\left(x+1\right)^2+9< =9\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
d: \(D=-8x^2+4xy-y^2+3\)
\(=-8\left(x^2-\dfrac{1}{2}xy\right)-y^2+3\)
\(=-8\left(x^2-2\cdot x\cdot\dfrac{1}{4}y+\dfrac{1}{16}y^2\right)+\dfrac{1}{2}y^2-y^2+3\)
\(=-8\left(x-\dfrac{1}{4}y\right)^2-y^2+3< =3\forall x,y\)
Dấu '=' xảy ra khi y=0 và x-1/4y=0
=>y=0 và x=0