Những câu hỏi liên quan
NT
Xem chi tiết
ND
Xem chi tiết
ND
15 tháng 8 2021 lúc 14:43

Giúp mình với ạ,cảm ơn mọi người

Bình luận (0)
NT
15 tháng 8 2021 lúc 14:44

b: Ta có: \(B=x^2+4x+9y^2-6y-1\)

\(=x^2+4x+4+9y^2-6y+1-6\)

\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)

Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)

Bình luận (0)
NK
Xem chi tiết
H24
16 tháng 6 2018 lúc 8:15

yiouoiyy

Bình luận (0)
DH
16 tháng 6 2018 lúc 8:37

\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-3\\z=8\end{cases}}}\)

Bình luận (0)
DH
16 tháng 6 2018 lúc 8:40

\(A=2x^2+4y^2+4xy+2x+4y+9=\left(x^2+4y^2+4xy+2x+4y+1\right)+x^2+8\)

   \(=\left(x+2y+1\right)^2+x^2+8\ge8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}}\)

Vậy \(Min\left(A\right)=8\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}\)

Bình luận (0)
NN
Xem chi tiết
JE
24 tháng 7 2016 lúc 21:43

Lấy pt (2) - pt (1) ta có:

                           8y + 8 = 0

=>                               y = -1

Thay y = -1 vào pt (1) ta có: 

       x2 - 10x + 26 = 0

( Giải phương trình bậc 2 bằng máy tính casio )

Ta được: x là số phức => phương trình vô nghiệm 

=>  Không tìm được cặp x,y thảo mãn hệ phương trình trên.

Bình luận (0)
TT
Xem chi tiết
NN
25 tháng 7 2016 lúc 20:49

Lấy pt (2) - pt (1) ta có:

                           8y + 8 = 0

=>                               y = -1

Thay y = -1 vào pt (1) ta có: 

       x2 - 10x + 26 = 0

( Giải phương trình bậc 2 bằng máy tính casio )

Ta được: x là số phức => phương trình vô nghiệm 

=>  Không tìm được cặp x,y thảo mãn hệ phương trình trên.

Bình luận (4)
H24
25 tháng 7 2016 lúc 21:02

Hỏi đáp Toán

Bình luận (0)
HT
26 tháng 6 2017 lúc 8:32

https://olm.vn/hoi-dap/question/113563.html

- Học tốt =))trịnh thủy tiên

Bình luận (0)
KN
Xem chi tiết
LD
11 tháng 10 2020 lúc 10:36

a) x2 + 4y + 4y2 + 26 - 10x = ( x2 - 10x + 25 ) + ( 4y2 + 4y + 1 ) = ( x - 5 )2 + ( 2y + 1 )2

b) 4y2 + 34 - 10x + 12y + x2 = ( x2 - 10x + 25 ) + ( 4y2 + 12y + 9 ) = ( x - 5 )2 + ( 2y + 3 )2

c) -10x + y2 - 8y + x2 + 41 = ( x2 - 10x + 25 ) + ( y2 - 8y + 16 ) = ( x - 5 )2 + ( y - 4 )2

d) x2 + 9y2 - 12y + 29 - 10x = ( x2 - 10x + 25 ) + ( 9y2 - 12y + 4 ) = ( x - 5 )2 + ( 3y - 2 )2

Bình luận (0)
 Khách vãng lai đã xóa
ND
11 tháng 10 2020 lúc 10:42

a) \(x^2+4y+4y^2+26-10x\)

\(=\left(x^2-10x+25\right)+\left(4y^2+4y+1\right)\)

\(=\left(x-5\right)^2+\left(2y+1\right)^2\)

b) \(4y^2+34-10x+12y+x^2\) đề ntn à?

\(=\left(4y^2+12y+9\right)+\left(x^2-10x+25\right)\)

\(=\left(2y-3\right)^2+\left(x-5\right)^2\)

c) \(-10x+y^2-8y+x^2+41\)

\(=\left(x^2-10x+25\right)+\left(y^2-8y+16\right)\)

\(=\left(x-5\right)^2+\left(y-4\right)^2\)

d) \(x^2+9y^2-12y+29-10x\)

\(=\left(x^2-10x+25\right)+\left(9y^2-12y+4\right)\)

\(=\left(x-5\right)^2+\left(3y-2\right)^2\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NT
Xem chi tiết
KN
10 tháng 9 2019 lúc 14:32

1) 

a) \(2x^2-12x+18+2xy-6y\)

\(=2x^2-6x-6x+18+2xy-6y\)

\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)

\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)

\(=\left(x-3\right)\left(2y+2x-6\right)\)

\(=2\left(x-3\right)\left(y+x-3\right)\)

b) \(x^2+4x-4y^2+8y\)

\(=x^2+4x-4y^2+8y+2xy-2xy\)

\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)

\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)

\(=\left(2y+x\right)\left(-2y+x+4\right)\)

2)  \(5x^3-3x^2+10x-6=0\)

\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)

Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)

\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)

\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Bình luận (0)

Bài làm

a) 2x2 - 12x + 18 + 2xy - 6y

= 2x2 - 6x - 6x + 18 + 2xy - 6y 

= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )

= 2x( y + x - 3 ) - 6( y + x - 3 )

= ( 2x - 6 ) ( y + x - 3 )

# Học tốt #

Bình luận (0)
DM
Xem chi tiết
H24
31 tháng 10 2019 lúc 11:22

a) \(x^2-10x+4y^2-4y+26=0\)

\(\Leftrightarrow\left(x^2-10x+25\right)+\left(4y^2-4y+1\right)=0\)

\(\Leftrightarrow\left(x-5\right)^2+\left(2y-1\right)^2=0\)

Mà \(\Leftrightarrow\left(x-5\right)^2+\left(2y-1\right)^2\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}x-5=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{1}{2}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa