Tim tất cả các giá trị của tham số m để bất phương trình x^2-2mx+(m² -2m-1)<0 võ nghiệm.
1. Tập tất cả các giá trị của tham số m để bất phương trình m 2 + 2 m x ≤ m 2 nghiệm đúng với mọi x là:
A. - 2 ; 0
B. - 2 ; 0
C. 0
D. - 2 ; 0
Xét bất phương trình log 2 2 2 x - 2 m + 1 log 2 x - 2 < 0 .Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng ( 2 ; + ∞ ) .
A. m ∈ ( - ∞ ; 0 ) .
B. m ∈ ( - 3 4 ; 0 ) .
C. m ∈ ( - 3 4 ; 0 ) .
D. m ∈ ( 0 ; + ∞ ) .
Bài 1. Tìm m để f (x)=mx^2 -2(m-1)x+4m-1 luôn dương Bài 2 tìm tất cả các giá trị của tham số m để bất phương trình sau có nghiệm đúng với mọi a.5x^2-x+m>0 b.m(m+2)x^2+2mx+2>0
Câu 1 a.tìm tất cả các giá trị của tham số m để bất phương trình mx²+3mx+(m+1)>0 nghiệm đúng với mọi số thực x? b.tìm các giá trị của m để biểu thức sau luôn âm:g(x)=(m-4)x²+(2m-8)x+m-5
a: Trường hợp 1: m=0
Bất phương trình sẽ là \(0x^2+3\cdot0\cdot x+0+1>0\)
=>1>0(luôn đúng)
Trường hợp 2: m<>0
\(\text{Δ}=\left(3m\right)^2-4m\left(m+1\right)\)
\(=9m^2-4m^2-4m=5m^2-4m\)
Để phương trình có nghiệm đúng với mọi số thực x thì \(\left\{{}\begin{matrix}m\left(5m-4\right)< 0\\m>0\end{matrix}\right.\Leftrightarrow0< m< \dfrac{4}{5}\)
Vậy: 0<=m<4/5
b: Trường hợp 1: m=4
\(g\left(x\right)=\left(4-4\right)\cdot x^2+\left(2\cdot4-8\right)x+4-5=-1< 0\)(luôn đúng)
Trường hợp 2: m<>4
\(\text{Δ}=\left(2m-8\right)^2-4\left(m-4\right)\left(m-5\right)\)
\(=4m^2-32m+64-4\left(m^2-9m+20\right)\)
\(=4m^2-32m+64-4m^2+36m-80\)
=4m-16
Để bất phương trình luôn âm thì \(\left\{{}\begin{matrix}4m-16< 0\\m-4< 0\end{matrix}\right.\Leftrightarrow m< 4\)
Vậy: m<=4
Câu 1 a.tìm tất cả các giá trị của tham số m để bất phương trình mx²+3mx+(m+1)>0 nghiệm đúng với mọi số thực x?
b.tìm các giá trị của m để biểu thức sau luôn âm:g(x)=(m-4)x²+(2m-8)x+m-5
Cho phương trình m . 9 x - 2 m + 1 6 x + m . 4 x ≤ 0 . Tìm tất cả các giá trị của tham số m để bất phương trình nghiệm đúng với mọi x thuộc (0;1]
A. m ≥ - 6
B. - 6 ≤ m ≤ 4
C. m ≥ - 4
D. m ≤ - 6
Bất phương trình đã cho
Đặt Bất phương trình trở thành
Chọn D.
Tập tất cả các giá trị của tham số m để bất phương trình ( m 2 + 2 m ) x ≤ m 2 nghiệm đúng với mọi x là:
A. (-2;0)
B. {-2;0}
C. {0}
D. [-2;0]
Bất phương trình ( m 2 + 2 m ) x ≤ m 2 nghiệm đúng với mọi x khi và chỉ khi m 2 + 2 m = 0 m 2 ≥ 0 ⇔ m 2 + 2 m = 0 ⇔ [ m = 0 m = - 2 .
Số giá trị nguyên của tham số m ∈ (-10;10) để bất phương trình mx2 -2mx-1+2m≤0 với mọi x∈R
\(mx^2-2mx-1+2m< =0\)(1)
TH1: m=0
BPT (1) sẽ trở thành
\(0\cdot x^2-2\cdot0\cdot x-1-2\cdot0< =0\)
=>-1<=0(luôn đúng)
=>Nhận
TH2: m<>0
\(\text{Δ}=\left(-2m\right)^2-4\cdot m\cdot\left(2m-1\right)\)
\(=4m^2-8m^2+4m=-4m^2+4m\)
Để BPT (1) luôn đúng với mọi x thuộc R thì
\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-4m^2+4m< =0\\m< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-4m\left(m-1\right)< =0\\m< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-1\right)>=0\\m< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>=1\\m< =0\end{matrix}\right.\\m< 0\end{matrix}\right.\)
=>m<0
Do đó: m<=0
mà \(m\in Z;m\in\left(-10;10\right)\)
nên \(m\in\left\{-9;-8;...;-1;0\right\}\)
=>Số giá trị nguyên thỏa mãn là 10