Những câu hỏi liên quan
TD
Xem chi tiết
LL
Xem chi tiết
PP
Xem chi tiết
TH
Xem chi tiết
H24
22 tháng 4 2021 lúc 15:16

 Chia dãy các số nguyên dương từ 1 đến 2020 thành 202 đoạn (1;10) (11;20) ... (2011;2020).

Vì A có 607 số nguyên dương khác nhau chia thành 202 đoạn nên theo nguyên lí Đi - Rich - Lê tồn tại ít nhất 1 đoạn chứa 4 số trong 607 số trên

Vì trong 4 số trên luôn tồn tại 2 số cùng số dư khi chia cho 3 , gọi 2 số đó là x , y ( x > y ) 

suy ra x - y chia hết cho 3

Mà x - y < 9

suy ra x , y thuộc (3;6;9)

Bình luận (0)
VM
Xem chi tiết
CM
Xem chi tiết
CX
7 tháng 3 2019 lúc 15:41

Bài 1:

   \(^{n^2+15}\)là số chính phương nên đặt \(n^2+15=a^2\left(a\in N\right)\)

\(\Rightarrow n^2-a^2=-15\Rightarrow n^2-an+an-a^2=-15\Rightarrow\left(n^2-an\right)+\left(an-a^2\right)=-15\)

\(\Rightarrow n\left(n-a\right)+a\left(n-a\right)=-15\Rightarrow\left(n+a\right)\left(n-a\right)=-15\)

Vì \(a,n\in N\Rightarrow n-a\le n+a\)

Xét các  trường hợp, bài toán đưa về dạng tổng-hiệu:

 TH1:\(\hept{\begin{cases}n-a=-1\\n+a=15\end{cases}\Rightarrow\left(n,a\right)=\left(8,7\right)}\Rightarrow n=8\)

TH2:\(\hept{\begin{cases}n-a=-3\\n+a=5\end{cases}\Rightarrow n=1}\)

TH3:\(\hept{\begin{cases}n-a=-5\\n+a=3\end{cases}\Rightarrow n=-1\notin N\Rightarrow}\)loại

TH4\(\hept{\begin{cases}n-a=-15\\n+a=1\end{cases}\Rightarrow n=-7\notin N\Rightarrow}\)loại

2 bài còn lại dễ ,bạn tự làm nhé

Bình luận (0)
CM
7 tháng 3 2019 lúc 17:43

Làm đầy đủ minhg k cho , và đang rất cần gấp

Bình luận (0)
HL
Xem chi tiết
NM
18 tháng 3 2020 lúc 21:28

cái này mik chịu, mik mới có lớp 7

Bình luận (0)
 Khách vãng lai đã xóa
TK
19 tháng 3 2020 lúc 11:23

1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)

Mà b+a>b-a ; p là số nguyên tố 

=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)

=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)

Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4

Mà p là số nguyên tố 

=> \(p^2\)chia 8 dư 1

=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)

+Số chính phương chia 3 luôn dư 0 hoặc 1

Mà p là số nguyên tố lớn hơn 3

=> \(p^2\)chia 3 dư 1

=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)

Từ (1);(2)=> \(a⋮12\)

Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)

Bình luận (0)
 Khách vãng lai đã xóa
TK
19 tháng 3 2020 lúc 11:31

2,     \(T=\frac{x}{1-yz}+\frac{y}{1-xz}+\frac{z}{1-xy}\)

Áp dụng cosi ta có \(yz\le\frac{y^2+z^2}{2}\)

=> \(\frac{x}{1-yz}\le\frac{x}{1-\frac{y^2+z^2}{2}}=\frac{2x}{2-y^2-z^2}=\frac{2x}{1+x^2}\)

Lại có \(x^2+\frac{1}{3}\ge2x\sqrt{\frac{1}{3}}\)

=> \(\frac{x}{1-yz}\le\frac{2x}{\frac{2}{3}+2x\sqrt{\frac{1}{3}}}=\frac{x}{\frac{1}{3}+x\sqrt{\frac{1}{3}}}\le\frac{x.1}{4}\left(\frac{1}{\frac{1}{3}}+\frac{1}{x\sqrt{\frac{1}{3}}}\right)=\frac{1}{4}.\left(3x+\sqrt{3}\right)\)

Khi đó \(T\le\frac{1}{4}.\left(3x+3y+3z+3\sqrt{3}\right)\)

Mà \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=\sqrt{3}\)

=> \(T\le\frac{6\sqrt{3}}{4}=\frac{3\sqrt{3}}{2}\)

Vậy \(MaxT=\frac{3\sqrt{3}}{2}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
PJ
Xem chi tiết
NK
Xem chi tiết
DN
5 tháng 1 2016 lúc 19:03

x=0 ; y=0

x=1 ; y=2

x=-1 ; y=-1

Bình luận (0)