CMR:
\(n\left(n+1\right)\left(2n+1\right)\)chia hết cho 2 và 3
CMR với mọi số nguyên n thì:
a/ \(n^2\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
b/ \(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
c/ \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24
CMR: với mọi số tự nhiên n thì:
a)\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5
b)\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)chia hết cho 2
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
a)
= n3 + 2n2 + 3n2 + 6n - n - 2 + 2
= 5n2 + 5n
= 5(n2 + n ) chia hết cho 5
b)
= 2(12n +5) chia hết cho 2
CMR
\(1.\left(n+3\right)\)chia hết cho \(N\)
\(2.\left(n+8\right)\)chia hết cho \(\left(n+3\right)\)
\(3.\left(18-2n\right)\)chia hết cho \(\left(n+3\right)\)
giải chi tiết cho mình nha
CMR: với mọi số tự nhiên n :
a) \(\left(x+1\right)^{2n}-x^{2n}-2x-1\) chia hết cho \(x\left(x+1\right)\left(2x+1\right)\)
b) \(x^{4n+2}+2x^{2n+1}+1\) chia hết cho \(\left(x+1\right)^2\)
c) \(\left(x+1\right)^{4n+2}+\left(x-1\right)^{4n+2}\) chia hết cho \(x^2+1\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
\(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
n2.(n + 1) + 2n.(n + 1)
= (n + 1).(n2 + 2n)
= (n + 1).n.(n + 2)
= n.(n + 1).(n + 2)
Vì n.(n + 1).(n + 2) là tích 3 số tự nhiên liên tiếp => n.(n + 1).(n + 2) chia hết cho 2 và 3
Mà (2,3)=1 => n.(n + 1).(n + 2) chia hết cho 6
=> n2.(n + 1) + 2n.(n + 1) chia hết cho 6
(2n - 1)3 - (2n - 1)
= (2n - 1).[(2n - 1)2 - 1]
= (2n - 1).(2n - 1 - 1).(2n - 1 + 1)
= (2n - 1).(2n - 2).2n
Vì 2n.(2n - 2) là tích 2 số chẵn liên tiếp => 2n.(2n - 2) chia hết cho 8
=> (2n - 1).(2n - 2).2n chia hết cho 8
=> (2n - 1)3 - (2n - 1) chia hết cho 8
Ủng hộ mk nha ♡_♡ ☆_☆
Rút gọn: \(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+....+\frac{2n+1}{\left(n.\left(n+1\right)\right)^2}\)
Cho a1, a2, a3,........., a2016 là các STN và tổng chúng chia hết cho 3. CMR: A=a13+a23+..............+a20163 chia hết cho 3.
CMR Biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\) luôn chia hết cho 5 với mọi n là số nguyên
\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\) nên sẽ luôn chia hết cho 5 với mọi n là số nguyên
Chứng minh rằng n thuộc Z
\(a,\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
\(b,\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)
\(=\left(2n-1\right).4.n\left(n-1\right)\)
\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)
\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)
\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)
CM Biểu thức S=\(n^3\left(n+2\right)^2+\left(n+1\right)\left(n^3-5n+1\right)-2n-1\) chia hết cho 120 , với n là số nguyên