Những câu hỏi liên quan
NT
Xem chi tiết
AA
Xem chi tiết
DT
2 tháng 7 2016 lúc 12:40

\(a\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow ab+a+ab+b=ab+a+b+1\Leftrightarrow ab=1\left(dpcm\right)\)

Bình luận (0)
DL
Xem chi tiết
FF
28 tháng 8 2016 lúc 16:07

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

Bình luận (0)
H24
3 tháng 5 2019 lúc 15:01

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

Bình luận (0)
H24
3 tháng 5 2019 lúc 15:06

sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề

Bình luận (0)
LS
Xem chi tiết
MT
13 tháng 3 2016 lúc 21:23

1)a+3>b+3

=>a>b

=>-2a<-2b

=>-2a+1<-2b+1

2)x>0;y<0 =>x2.y<0;x.y2>0

=>x2.y<0;-x.y2<0

=>x2y-xy2<0

Bình luận (0)
LA
13 tháng 3 2016 lúc 21:22

1.ta có a+3>b+3

suy ra -2a-6>-2b-6

=> (-2a-6)+5>(-2b-6)+5

=>-2a+1>-2b+1

2.vì x>0=> x^2>0 và y<0=>y^2>0

=> x^2*y<0 và x*y^2>0

=> x*y^2>x^2*y

=>x^2*y-x*y^2<0

Bình luận (0)
LA
13 tháng 3 2016 lúc 21:29

mình nhầm bạn ơi phần a mình lộn dấu , bạn chỉ cần đổi ngược dấu lại là xong nha!!!!!!!!!!

Bình luận (0)
DL
Xem chi tiết
NN
13 tháng 8 2017 lúc 15:25

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

Bình luận (0)
PT
13 tháng 8 2017 lúc 18:00

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)

Bình luận (0)
PT
13 tháng 8 2017 lúc 18:16

bài 1 \(\left(\frac{x}{y}\right)^2+\left(\frac{y}{z}\right)^2\ge2\times\frac{x}{y}\times\frac{y}{z}=2\frac{x}{z}\)

làm tương tự rồi cộng các vế các bất đẳng thức lại với nhau ta có dpcm ( cộng xong bạn đặt 2 ra ngoài ý, mk ngại viết nhiều hhehe) 

       

Bình luận (0)
VL
Xem chi tiết
PQ
23 tháng 7 2019 lúc 15:19

a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) ) 

b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)

c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)

do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm ) 

Bình luận (0)
H24
Xem chi tiết
MN
Xem chi tiết
LV
Xem chi tiết
NH
14 tháng 1 2016 lúc 8:56

A=(3^0+3^1+3^2+3^3)+(3^4+3^5+3^6+3^7)+...+(3^2009+3^2010+3^2011+3^2012)

A=40+3^4*(1+3+3^2+3^3)+...+3^2009*(1+3+3^2+3^3)

A-1=40+80*40+...+3^2009*40

A-1=40*(1+80+..+3^2009)

Bình luận (0)