a)Biết a, b, c là 3 số tự nhiên đôi một nguyên tố cùng nhau. Chứng minh: \(\left(ab+bc+ca;abc\right)=1\)
b) Tìm \(n\in N\)sao cho:
- \(\left(9n+49\right)\text{⋮}\left(7n+81\right)\)
- \(7\left(9+n\right)^2\text{⋮}9\left(7+n\right)^2\)
Biết a, b,c là 3 số tự nhiên đôi một nguyên tố cung nhau. Chứng minh rằng ab+bc+ca; a+b+c và số abc cũng nguyên tố cùng nhau.
giả sử abc và ab+bc+ca không nguyên tố cùng nhau
=> tồn tại d là số nguyên tố và d là ước chung của abc và ab+bc+ca
abc chia hết cho d mà a,b,c nguyên tố cùng nhau từng đôi một nên có 3 TH:
TH1: a chia hết cho d => ab,ac chia hết cho d
mà ab+bc+ca chia hết cho d
=> bc chia hết cho d => b hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH2: b chia hết cho d => ba,bc chia hết cho d
mà ab+bc+ca chia hết cho d
=> ac chia hết cho d => a hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH3: c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
kết luận: abc và ab+bc+ca nguyên tố cùng nhau
Biết a, b,c là 3 số tự nhiên đôi một nguyên tố cung nhau. Chứng minh rằng ab+bc+ca; a+b+c và số abc cũng nguyên tố cùng nhau.
c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
kết luận: abc và ab+bc+ca nguyên tố cùng nhau
Biết a, b,c là 3 số tự nhiên đôi một nguyên tố cùng nhau. Chứng minh rằng (ab; bc; ca; abc)=1.
c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
\(\Rightarrow\)ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
Kết luận: abc và ab+bc+ca nguyên tố cùng nhau
Doan Thanh Phuong đề bài yêu cầu khác bạn ạ
Giải
Giả sử \(\left(abc,ab+bc+ca\right)\ne1\)
\(\Rightarrow\)Tồn tại d là số nguyên tố và \(d\inƯC\left(abc,ab+bc+ca\right)\)
\(abc⋮d\)mà a,b,c nguyên tố cùng nhau từng đôi một nên có 3 trường hợp
TH1: a chia hết cho d \(\Rightarrow\) ab,ac chia hết cho d
mà ab + bc + ca chia hết cho d
\(\Rightarrow\) bc chia hết cho d \(\Rightarrow\) b hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH2: b chia hết cho d \(\Rightarrow\) ba,bc chia hết cho d
mà ab+bc+ca chia hết cho d
\(\Rightarrow\) ac chia hết cho d \(\Rightarrow\) a hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH3: c chia hết cho d \(\Rightarrow\) ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
\(\Rightarrow\) ab chia hết cho d \(\Rightarrow\) a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
Vậy: giả thiết đưa ra là sai
Kết luận: abc và ab + bc + ca nguyên tố cùng nhau
CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
cho 3 số tự nhiên a,b,c đôi một nguyên tố cùng nhau
CMR: (ab+bc+ca,abc)=1
Biết rằng a, b, c là ba số tự nhiên nguyên tố cùng nhau từng đôi một. Chứng minh rằng ƯCLN(a.b.c;a.b+b.c+c.a)
1, CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
2, CMR \(\forall n\in N\)* thì \(\dfrac{\left(17+12\sqrt{2}\right)^n-\left(17-12\sqrt{2}\right)^n}{4\sqrt{2}}\)
3, Tìm x,y∈Z:\(x^3-y^3=13\left(x^2+y^2\right)\)
cho ba số nguyên a,b,c biết chúng đôi một nguyên tố cùng nhau và thỏa mãn (a+b)c=ab. Chứng minh a+b là số chính phương
Trong tập hợp số nguyên không có khái niệm hai số nguyên tố cùng nhau. Trong bài này phải nói trị tuyệt đối của chúng đôi một nguyên tố cùng nhau.
Cho các số a;b;c nguyên tố cùng nhau. Chứng minh rằng ba số: A = ab+bc+ca; B = a+b+c; C=abc nguyên tố cùng nhau
ê cô đã giải cho cậu bài này chưa bày mình với please mình đang rất cần
goi UCLN( a,b , c) la d
ta co
a chia het cho d , b chia het cho d , c chia het cho d
suy ra a.bchia het cho d
b.c chia het cho d
ca cung chia het cho d
suy ra abc cung chia het cho d
va a+b+c cung chia het cho d
trái với (a,b,c)=1
suy ra (ab+bc+ca; a+b+c;abc)=1
vay UCLN(A,B,C )=1
cùng nhau trong hoàn cảnh chúngthuộc z
đê abcbang nhau suy ra ac+cb=ab