Những câu hỏi liên quan
NL
Xem chi tiết
SN
9 tháng 1 2024 lúc 19:32

a

 loading...

b) Xét phương trình hoành độ giao điểm của (P) và (d'):

\(x^2=x-2m+1\)

\(\Leftrightarrow x^2-x+2m-1=0\)

\(\Delta=\left(-1\right)^2-4.1.\left(2m-1\right)=5-8m\)

Để (d') cắt (P) tại 2 điểm phân biệt: \(\Delta>0\Leftrightarrow5>8m\Leftrightarrow m< \dfrac{5}{8}\)

Theo định lí Vi-et:

\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1.x_2=2m-1\end{matrix}\right.\)

Theo bài: \(x_1^2+x_2^2=7\)

\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=7\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)

\(\Leftrightarrow1^2-2\left(2m-1\right)=7\)

\(\Leftrightarrow1-4m+2=7\)

\(\Leftrightarrow-4m=4\Leftrightarrow m=-1\left(tmm< \dfrac{5}{8}\right)\)

Vậy m = -1 là giá trị cần tìm

 

Bình luận (0)
H9
9 tháng 1 2024 lúc 19:34

a) 

b) Đường thẳng (d') cắt (P) ta có phương trình hoành độ giao điểm là:

\(x^2=x-2m+1\)

\(\Leftrightarrow x^2-x+2m-1=0\)

\(\Delta=\left(-1\right)^2-4\cdot1\cdot\left(2m-1\right)=1-8m+4=-8m+5\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{5-8m}}{2}\\x_2=\dfrac{1-\sqrt{5-8m}}{2}\end{matrix}\right.\left(đk:m\le\dfrac{5}{8}\right)\)

Mà: \(x^2_1+x^2_2=7\)

\(\Leftrightarrow\left(\dfrac{1+\sqrt{5-8m}}{2}\right)^2+\left(\dfrac{1-\sqrt{5-8m}}{2}\right)^2=7\)

\(\Leftrightarrow\dfrac{1+2\sqrt{5-8m}+5-8m}{4}+\dfrac{1-2\sqrt{5-8m}+5-8m}{4}=7\)

\(\Leftrightarrow\dfrac{6+2\sqrt{5-8m}-8m+6-2\sqrt{5-8m}-8m}{4}=7\)

\(\Leftrightarrow12-16m=28\)

\(\Leftrightarrow-16m=16\)

\(\Leftrightarrow m=-1\left(tm\right)\)

Vậy: .... 

Bình luận (1)
PB
Xem chi tiết
CT
18 tháng 7 2019 lúc 13:43

+ Phương trình hoành độ giao điểm của (C)  và đường thẳng d:

=x4- (2m-1) x2+2m = 2 hay  x4- (2m-1) x2+2m -2=0

Suy ra x2= 1 hoặc x2= 2m-2 (1)

+ Đường thẳng d cắt C tại bốn điểm phân biệt có hoành độ nhỏ hơn 3 khi và chỉ khi phương trình (1)  có hai nghiệm phân biệt nhỏ hơn 3.

Do đó có 4 giá trị nguyên của m thỏa mãn đầu bài.

Chọn D.

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 7 2017 lúc 13:52

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 9 2019 lúc 5:56

Đáp án A

Phương trình hoành độ giao điểm

Để phương trình có 3 nghiệm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt khác 2

 Vậy có 2 giá trị của m thỏa mãn.

Bình luận (0)
MD
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 6 2017 lúc 17:21

Phương trình hoành độ giao điểm:  x 2 − 2 x − 2 = x + m ⇔ x 2 − 3 x − 2 − m = 0

(d) cắt (P) tại hai điểm phân biệt A, B ⇔ Δ > 0 ⇔ 17 + 4 m > 0 ⇔ m > − 17 4

Giả sử (*) có hai nghiệm x 1 , x 2 thì x 1 + x 2 = − b a = 3 x 1 . x 2 = c a = − m − 2

= 18 − 4 ( − 2 − m ) + 6 m + 2 m 2 = 2 m 2 + 10 m + 26 = 2 m + 5 2 2 + 27 2 ≥ 27 2 với m > − 17 4

Vậy giá trị nhỏ nhất của O A 2 + O B 2 là 27 2  khi m = − 5 2

Đáp án cần chọn là: A

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 11 2019 lúc 9:18

Chọn B

đều thỏa mãn điều kiện.

 

Bình luận (0)
LS
Xem chi tiết
SC
4 tháng 4 2021 lúc 7:17

Xét pt tọa độ giao điểm:

X²=(m+4)x-2m-5

<=> -x²+(m+4)x-2m-5

a=-1.   b= m+4.  c=2m-5

Để pt có 2 No pb =>∆>0

=> (m+4)²-4×(-1)×2m-5>0

=> m² +2×m×4+16 +8m-20>0

=> m²+9m -2>0

=> x<-9 và x>0

 

 

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 11 2017 lúc 5:57

Đáp án C

Bình luận (0)