\(Cho-A=\frac{3x+2}{x-3}\\ B=\frac{x^2+3x-7}{x+3}\)
a) Tình A khi \(x=1;x=2;x=\frac{5}{2}\)
bTìm x Z để A là số nguyên.
c) Tìm x Z để B là số nguyên.
d) Tìm x Z để A và B cùng là số nguyên.
thực hiện phép tính
a) (x3+8y3):(2y+x) b.\(\frac{a-1}{2\left(a-4\right)}+\frac{a}{a-4}\) c. (x3+3x2y+3xy2+y3):(2x+2y)
d. (x-5)2+(7-x)(x+2) e.\(\frac{3x}{x-2}-\frac{2x+1}{2-x}\) f. \(\left(\frac{x+2}{x+1}-\frac{2x}{x-1}\right)\cdot\frac{3x+3}{x}+\frac{4x^2+x+7}{x^2-x}\)
g.\(\left(\frac{1}{x+1}-\frac{3}{x^{3^{ }}+1}+\frac{3}{x^2-x+1}\right)\cdot\left(\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}\right)\) h.\(\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x+6}{4-9x^2}\)
Nguyễn Nam giúp giùm
) \(\dfrac{x^3+8y^3}{2y+x}\)
\(=\dfrac{x^3+\left(2y\right)^3}{x+2y}\)
\(=\dfrac{\left(x+2y\right)\left[x^2+x.2y+\left(2y\right)^2\right]}{x+2y}\)
\(=x^2+2xy+4y^2\)
b) \(\dfrac{a-1}{2\left(a-4\right)}+\dfrac{a}{a-4}\) MTC: \(2\left(a-4\right)\)
\(=\dfrac{a-1}{2\left(a-4\right)}+\dfrac{2a}{2\left(a-4\right)}\)
\(=\dfrac{a-1+2a}{2\left(a-4\right)}\)
\(=\dfrac{3a-1}{2\left(a-4\right)}\)
c) \(\dfrac{x^3+3x^2y+3xy^2+y^3}{2x+2y}\)
\(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2}\)
d) \(\left(x-5\right)^2+\left(7-x\right)\left(x+2\right)\)
\(=\left(x^2-2.x.5+5^2\right)+\left(7x+14-x^2-2x\right)\)
\(=x^2-10x+25+7x+14-x^2-2x\)
\(=39-5x\)
e) \(\dfrac{3x}{x-2}-\dfrac{2x+1}{2-x}\)
\(=\dfrac{3x}{x-2}+\dfrac{2x+1}{x-2}\)
\(=\dfrac{3x+2x+1}{x-2}\)
\(=\dfrac{5x+1}{x-2}\)
h) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x+6}{4-9x^2}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{9x^2-4}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\) MTC: \(\left(3x-2\right)\left(3x+2\right)\)
\(=\dfrac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{\left(3x+2\right)-\left(3x-2\right)+\left(3x+6\right)}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-3x+2+3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+10}{\left(3x-2\right)\left(3x+2\right)}\)
Rút gọn biểu thức:
a, \(\frac{x^4+15x+7}{2x^3+2}.\frac{x}{14x^2+1}.\frac{4x^3+4}{x^4+15x+7}\)
b, \(\frac{x^7+3x^2+2}{x^3-1}.\frac{3x}{x+1}.\frac{x^2+x+1}{x^7+3x^2+2}\)
thực hiện pháp tính sau:
a) (x3+8y3):(2y+x) b.\(\frac{a-1}{2\left(a-4\right)}+\frac{a}{a-4}\) c. (x3+3x2y+3xy2+y3):(2x+2y)
d. (x-5)2+(7-x)(x+2) e.\(\frac{3x}{x-2}-\frac{2x+1}{2-x}\) f. \(\left(\frac{x+2}{x+1}-\frac{2x}{x-1}\right)\cdot\frac{3x+3}{x}+\frac{4x^2+x+7}{x^2-x}\)
g.\(\left(\frac{1}{x+1}-\frac{3}{x^{3^{ }}+1}+\frac{3}{x^2-x+1}\right)\cdot\left(\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}\right)\) h.\(\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x+6}{4-9x^2}\)
cho A=\(\left(\frac{2}{x^2-3x}-\frac{1}{x-3}\right)\cdot\frac{x^2-6x+9}{x-2}\)
a,Rút gọn A
b,tìm x để A>0
c,khi x>0,x khác 3 hãy tìm MinP=A+3x
cho biết : A= \(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right).\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x+2}\)
a, tìm đkxđ của A và rút gọn A
b, tính giá trị của A khi x=3
c, tìm giá trị nguyên của x để A có giá trị nguyên
\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn
Ai giúp vs !!!
\(a.\frac{3x-7}{5}=\frac{2x-1}{3}\\ b.\frac{4x-7}{12}-x=\frac{3x}{8}\\ c.\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\\ d.\frac{5x-8}{3}=\frac{1-3x}{2}\\ e.\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\\ f.\frac{x-1}{\frac{2}{5}}-3-\frac{3x-2}{\frac{5}{4}}-2=1\)
\(\frac{3x-7}{5}=\frac{2x-1}{3}\)
\(\Leftrightarrow9x-21=10x-5\)
\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)
\(\frac{4x-7}{12}-x=\frac{3x}{8}\)
\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow-56-64x=36x\)
\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)
\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)
Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0
Vậy x = 2019
\(\frac{5x-8}{3}=\frac{1-3x}{2}\)
\(\Leftrightarrow10x-16=3-9x\)
\(\Leftrightarrow19x=19\Leftrightarrow x=1\)
\(\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\)
\(\Rightarrow\frac{4x-20-6x+54}{24}=\frac{5x-3+16}{8}\)
\(\Rightarrow\frac{-2x+34}{24}=\frac{5x+13}{8}\)
\(\Rightarrow-16x-272=120x+312\)
\(\Leftrightarrow-136x=584\Leftrightarrow x=\frac{-73}{17}\)
bài 1 giải phương trình
a) \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
B) \(\frac{2}{\left(1-3x\right)\left(3x+11\right)}=\frac{1}{9x^2-6x+1}-\frac{3}{\left(3x+11\right)^2}\)
Bài 2 cho ẩn z
\(\frac{z}{3z+z}-\frac{z}{z-3a}=\frac{a^2}{9a^2-z^2}\)
a) giải phương trình khi a=1
b) tìm cá giá trị a khi z=1
\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right)\div\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
a)Rút gọn
b)Tìm x để A<0
c)Tính A khi x=6022
d)Tìm nguyên để A nguyên
a) \(ĐKXĐ:\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}\)
\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
\(=\left[\frac{\left(x+1\right)\left(x+2\right)}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x\left(x+1\right)}{3x\left(x+1\right)}\right]:\frac{2\left(1-2x\right)}{x+1}-\frac{3x+1-x^2}{3x}\)
\(=\frac{\left(x+1\right)\left(x+2\right)+6x-9x\left(x+1\right)}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(=\frac{2-8x^2}{3x\left(x+1\right)}.\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(=\frac{1+2x-3x-1+x^2}{3x}\)
\(=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)
b)\(\text{Với }x\ne0,x\ne-1,x\ne\frac{1}{2}\text{ ta có:}\)
\(\text{Để A< 0\Leftrightarrow}\frac{x-1}{3}< 0\Rightarrow x-1< 0\Leftrightarrow x< 1\)
Dựa theo kết quả câu a) mk lm tiếp câu b) nhé:
b) ĐKXĐ: \(x\ne0;\)\(x\ne-1;\)\(x\ne0,5\)
\(A< 0\) thì \(\frac{x-1}{3}< 0\)
\(\Leftrightarrow\)\(x-1< 0\) (do \(3>0\))
\(\Leftrightarrow\)\(x< 1\)
Vậy với \(x< 1\)thỏa mãn ĐKXĐ thì \(A< 0\)
a,\(\frac{3}{x}+\frac{1}{x+3}+\frac{3}{x+6}+\frac{1}{x+7}=\frac{1}{1-x}\)
b, \(\frac{1}{x-5}+\frac{1}{x-2}+\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+3}=\frac{3x-3}{4}\)
c,\(\frac{1}{x-3}+\frac{1}{3x+1}+\frac{10x-13}{4x-6}=\frac{1}{x+1}+\frac{1}{2x-1}+\frac{1}{3x+7}\)
d,\(\frac{x^2+x+1}{2x-1}\left(\frac{3x^2-x+5}{4x-2}-3\right)=8\)
e,\(\frac{2x^2-3}{3x-1}\left(2x-\frac{7+4x}{3x-1}\right)=2\)
f,\(\frac{x\left(3x-1\right)\left(3x^2+1\right)\left(6x^2-3x-1\right)}{\left(x+1\right)^3}=\frac{1}{2}\)
g, \(x\left(x^2+2\right)\left(x^2+2x+8+\frac{12}{x-2}\right)=3\left(x-2\right)\)