Giải phương trình :
\(3^{\cos x}-2^{\cos x}=\cos x\)
giải phương trình sin^2 x − 4√3 sin x · cos x + cos^2 x = −2.
Với \(cosx=0\) ko phải nghiệm
Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)
\(\Rightarrow tan^2x-4\sqrt{3}tanx+1=-2\left(1+tan^2x\right)\)
\(\Leftrightarrow3tan^2x-4\sqrt{3}tanx+3=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)
Giải phương trình
(1+cos(x))*(2+4^cos(x)) = 3 * 4^cos(x)
mn giúp mình với !!!! HELP !
Học cái viết đề đi b. Đọc không có ra
đề nè
\(\left(1+cosx\right)\cdot\left(1+4^{cosx}\right)=3\cdot4^{cosx}\)
Giải các phương trình lượng giác:
a) \(sin4x-cos\left(x+\dfrac{\pi}{6}\right)=0\)
b) \(cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
c) \(cos4x=cos\dfrac{5\pi}{12}\)
d) \(cos^2x=1\)
d: cos^2x=1
=>sin^2x=0
=>sin x=0
=>x=kpi
a: =>sin 4x=cos(x+pi/6)
=>sin 4x=sin(pi/2-x-pi/6)
=>sin 4x=sin(pi/3-x)
=>4x=pi/3-x+k2pi hoặc 4x=2/3pi+x+k2pi
=>x=pi/15+k2pi/5 hoặc x=2/9pi+k2pi/3
b: =>x+pi/3=pi/6+k2pi hoặc x+pi/3=-pi/6+k2pi
=>x=-pi/2+k2pi hoặc x=-pi/6+k2pi
c: =>4x=5/12pi+k2pi hoặc 4x=-5/12pi+k2pi
=>x=5/48pi+kpi/2 hoặc x=-5/48pi+kpi/2
a) Giải phương trình \(\cos x = - \frac{1}{2}\)
b) Tìm góc lượng giác x sao cho \(\cos x = \cos \left( { - {{87}^ \circ }} \right)\)
a) \(\cos x = - \frac{1}{2} \Leftrightarrow \cos x = \cos \left( {\frac{{2\pi }}{3}} \right) \Leftrightarrow \left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\)
b) \(\cos x = \cos \left( { - {{87}^ \circ }} \right) \Leftrightarrow \left[ \begin{array}{l}x = - {87^ \circ } + k.360\\x = {87^ \circ } + k{.360^ \circ }\end{array} \right.\)
Giải phương trình cos 5x. cos x = cos 4x
Đáp án A
Vậy phương trình có nghiệm là
Giải phương trình: cos 2 x - 3 cos x = 4 cos 2 x 2
Tìm góc α ∈ π 6 ; π 4 ; π 3 ; π 2 để phương trình cos 2 x + 3 sin 2 x - 2 cos x = 0 tương đương với phương trình cos ( 2 x - α ) = cos x
Đáp án D
Ta có
Do đó để phương trình tương đương với phương trình
Giải phương trình: \(\cos\left(x+\frac{2\pi}{3}\right)+\cos x=0\)
Giải các phương trình sau :
a) \(\cos^2x+2\sin x\cos x+5\sin^2x=2\)
b) \(3\cos^2x-2\sin2x+\sin^2x=1\)
c) \(4\cos^2x-3\sin x\cos x+3\sin^2x=1\)