Những câu hỏi liên quan
H24
Xem chi tiết
MH
10 tháng 2 2022 lúc 20:40

\(\dfrac{1}{x+2}+\dfrac{6x+12}{x^3+8}-\dfrac{7}{x^2-2x+4}=0\) \(\left(đk:x\ne-2\right)\)

\(\Leftrightarrow\dfrac{x^2-2x+4+6x+12-7\left(x+2\right)}{x^3+8}=0\)

\(\Leftrightarrow\dfrac{x^2-3x+2}{x^3+8}=0\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)(TM)

Vậy ...

Bình luận (0)
NT
10 tháng 2 2022 lúc 20:33

dk : x khac -2 

\(\Rightarrow x^2-2x+4+6x+12-7\left(x+2\right)=0\)

\(\Leftrightarrow x^2+4x+16-7x-14=0\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow x^2-2x-x+2=0\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=2\)

Bình luận (0)
TN
Xem chi tiết
LD
11 tháng 6 2020 lúc 11:03

2x - | 6x - 7 | = -x + 8

* x > 0

Phương trình trở thành : 2x - 6x - 7 = -x + 8

                               <=> 2x - 6x + x = 8 + 7

                               <=> -3x = 15

                               <=> x = -5 ( không tmđk vì < 0 )

* x < 0

Phương trình trở thành : 2x - (-6x - 7) = -x + 8

                               <=> 2x + 6x + 7 = -x + 8

                               <=> 2x + 6x + x = 8 - 7

                               <=> 9x = 1

                               <=> x = 1/9 ( không tmđk vì > 0 )

Vậy phương trình vô nghiệm 

Bình luận (0)
 Khách vãng lai đã xóa
QO
11 tháng 6 2020 lúc 13:02

Bài làm

~ Bài bạn Rin thiếu ngoặc khi xét biểu thức nếu vào phương trình đầu ~

*Nếu 6x - 7 > 0 <=> x > 7/6 

----> | 6x - 7 | = 6x - 7

=> Phương trình: 2x - ( 6x - 7 ) = -x + 8

<=> 2x - 6x + 7 = -x + 8

<=> -4x + 7 + x - 8 = 0

<=> -3x - 1 = 0

<=> -3x = 1

<=> x = -1/3 ( Không thỏa mãn )

*Nếu 6x - 7 < 0 <=> x > 7/6

----> | 6x - 7 | = -( 6x - 7 ) = 7 - 6x

=> Phương trình: 2x - ( 7 - 6x ) = -x + 8

<=> 2x - 7 + 6x + x - 8 = 0

<=> 9x - 15 = 0

<=> x = 15/9 ( Thỏa mãn )

Vậy x = 15/9 là nghiệm phương trình. 

Bình luận (0)
 Khách vãng lai đã xóa
QO
11 tháng 6 2020 lúc 13:04

@Rin: Bạn sai rất nhiều chỗ nhé >.<

+ Thứ nhất: Điều kiện xác định không phải xác định với 0, với trường hợp nhân hoặc chia thì mới xét trường hợp với số 0. Khi xét điều kiện với không thì phải giải x ra, và x đó mới chính là điều kiện. 

+ Thứ hai: Khi bạn thay vào quên không đóng ngoặc nên sai hết r. 

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
NT
16 tháng 5 2023 lúc 9:09

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

Bình luận (0)
DA
Xem chi tiết
NT
22 tháng 1 2021 lúc 22:31

a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)

Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)

Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)

\(\Leftrightarrow2x^2+2-2x^2-2x=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow-2x=-2\)

hay x=1(nhận)

Vậy: S={1}

b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)

Ta có: \(\dfrac{5}{3x+2}=2x-1\)

\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)

\(\Leftrightarrow6x^2-3x+4x-2-5=0\)

\(\Leftrightarrow6x^2+x-7=0\)

\(\Leftrightarrow6x^2-6x+7x-7=0\)

\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)

d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)

Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)

\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)

\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)

Bình luận (0)
DD
Xem chi tiết
TB
Xem chi tiết
H24
15 tháng 1 2022 lúc 17:36

\(\dfrac{x-4}{x+2}+\dfrac{x+3}{x+4}=\dfrac{2x+1}{x^2+6x+8}\\ =\dfrac{x-4.2}{x+4}+\dfrac{x+3}{x+4}=\dfrac{2x+1}{x^2+6x+8}\\ =\dfrac{x-8+x+3}{x+4}=\dfrac{2x+1}{x^2+6x+8}\\ =\dfrac{2x-5}{x+4}=\dfrac{2x+1}{x^2+6x+8}\)

 

 

Bình luận (0)
NT
Xem chi tiết
ND
Xem chi tiết
NM
29 tháng 10 2021 lúc 17:42

\(PT\Leftrightarrow x^2-2x+\sqrt{6x^2-12x+7}=0\\ \Leftrightarrow x^2-2x+1+\sqrt{6x^2-12x+7}-1=0\\ \Leftrightarrow\left(x-1\right)^2+\dfrac{6\left(x-1\right)^2}{\sqrt{6x^2-12x+7}+1}=0\\ \Leftrightarrow\left(x-1\right)\left(x-1+\dfrac{6}{\sqrt{6x^2-12x+7}+1}\right)=0\\ \Leftrightarrow x=1\left(x-1+\dfrac{6}{\sqrt{6x^2-12x+7}+1}>0\right)\)

Bình luận (1)
H24
Xem chi tiết