a) viết PT Parabol (P) đi qua điểm \(M\left(\sqrt{3};3\right)\) và có đỉnh O
b) cho Parabol (P) : \(y=ax^2\). Tìm a biết Parabol (P) đi qua điểm \(K\left(\sqrt{2};4\right)\)
Vẽ ĐTHS (P) với a tìm được
Cho Parabol(P) y=ax2 và điểm A(-2;1)
a) Viết PT Parabol (P) qua A
b) Gọi B là điểm thuộc (P) có hoành độ là 4. Viết PT đường thẳng đi qua A và B
c) Viết PT đường thẳng d//AB và (d) tiếp xúc với (P). Tìm tọa độ tiếp điểm
d)Vẽ trên cùng hệ trục Oxy đồ thị của (P) và (d)
Trên hệ trục tọa đook Oxy cho điểm A(2;-3) và parabol (p) có pt là
\(y=-\frac{1}{2}x^2\)
a. Viết pt đường thẳng có hệ số góc bằng k và đi qua điểm A(2;-3)
b. Cmr bất kì đường thẳng nào đi qua điểm A(2;-3) không song song với trục tung và cắt parabol \(y=-\frac{1}{2}x^2\)tại 2 điểm pb
Cho hàm số \(y=\left(m-1\right)x^2\) \(\left(m\ne1\right)\) có đồ thị là parabol (P)
a, Xác định m để (P) đi qua điểm \(A\left(-\sqrt{3};1\right)\)
b, Với giá tị m vừa tìm được ở trên, hãy;
i, Vẽ (P) trên mặt phẳng tọa độ
ii, Trong các điểm A(1;1), B\(\left(-1;\dfrac{1}{3}\right)\) và C(15;-75), điểm nào thuộc (P), điểm nào không thuộc (P) ?
iii, Tìm các điểm trên (P) có hoành độ bằng 1
iv, Tìm các điểm trên (P) có tung độ gấp đôi hoành độ
Trong mặt phẳng tọa độ Oxy cho M(1;2) và đường thẳng d: y=-3x+1
a, Viết PT đường thẳng d' đi qua M và song song với d
b, Cho parabol (P) \(y=mx^2\) \(\left(m\ne0\right)\). Tìm các giá trị của tham số m để d và (P) cắt nhau tại hai điểm phân biệt A, B nằm cùng phía đối với trục tung
a: (d)'//(d) nên (d'): y=-3x+b
Thay x=1 và y=2 vào (d'), ta được:
b-3=2
=>b=5
=>y=-3x+5
b: PTHĐGĐ là;
mx^2+3x-1=0
Để (d) cắt (P) tại hai điểm phân biệt nằm về cùng một phía so với trục tung thì
(-3)^2-4*m*(-1)>0 và -1/m>0
=>m<0 và 9+4m>0
=>m<0 và m>-9/4
=>-9/4<m<0
Cho 2 điểm A(1:4) B(-2;1)
a) Viết pt đường thẳng đi qua A, B (d)
b) Tìm m để đt (d) tiếp xúc với parabol P : P=10x^2
a: \(\overrightarrow{AB}=\left(-3;-3\right)=\left(1;1\right)\)
=>VTPT là (-1;1)
Phương trình đường thẳng AB là:
(d): \(-1\left(x-1\right)+1\left(y-4\right)=0\)
=>-x+1+y-4=0
=>-x+y-3=0
=>x-y+3=0
=>y=x+3
b: Sửa đề: y=mx2
Phương trình hoành độ giao điểm là:
\(mx^2-x-3=0\)
\(\text{Δ}=\left(-1\right)^2-4\cdot m\cdot\left(-3\right)=12m+1\)
Để (d) tiếp xúc với (P) thì 12m+1=0
hay m=-1/12
Trong mặt phẳng tọa độ Oxy , cho parabol (P) : y= -1/2 x^2
a) Vẽ parabol (P)
b) Gọi M là điểm thuộc (P) có hoành độ xM = 2 . Viết pt đường thẳng đi qua M và cắt hai trục tọa độ tại 2 điểm A và B sao cho OA =OB
trong mp tọa độ xOy ,cho Parabol (P) có pt y=-x2 và điểm M(0,-2)
a) viết pt đường thẳng (d) đi qua M với hệ số góc k (k thuộc R)
b) CM đườngthẳng (d) luôn cắt P tại 2 điểm phân biệt
c)XĐ k để đường thẳng (d) cắt Parabol tại A,B sao cho MA=2MB (A có hoành độ âm
Xác định parabol \(\left( P \right):y = a{x^2} + bx + 3\) trong mỗi trường hợp sau:
a) \(\left( P \right)\) đi qua hai điểm \(A(1;1)\) và \(B( - 1;0)\).
b) \(\left( P \right)\) đi qua điểm \(M(1;2)\) và nhận đường thẳng \(x = 1\) làm trục đối xứng.
c) \(\left( P \right)\) có đỉnh là \(I(1;4).\)
a) Theo giả thiết, hai điểm \(A(1;1)\) và \(B( - 1;0)\) thuộc parabol \(\left( P \right):y = a{x^2} + bx + 3\) nên ta có: \(\left\{ {\begin{array}{*{20}{c}}{a + b + 3 = 1}\\{a - b + 3 = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{2}}\\{b = \frac{1}{2}}\end{array}} \right.} \right.\)
Vậy hàm số cần tìm là: \(y = - \frac{5}{2}{x^2} + \frac{1}{2}x + 3.\)
b) Parabol nhận \(x = 1\) làm trục đối xứng nên \( - \frac{b}{{2a}} = 1\,\, \Leftrightarrow \,\,b = - 2a.\)
Điểm \(M(1;2)\) thuộc parabol nên \(a + b + 3 = 2\,\, \Leftrightarrow \,\,a + b = - 1.\)
Do đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{b = - 2a}\\{a + b = - 1}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = - 2}\end{array}} \right.} \right.\)
Vậy hàm số cần tìm là: \(y = {x^2} - 2x + 3\)
c) Parabol có đỉnh \(I(1;4)\) nên ta có:
\(\left\{ {\begin{array}{*{20}{c}}{ - \frac{b}{{2a}} = 1}\\{a + b + 3 = 4}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{b = - 2a}\\{a + b = 1}\end{array}\,\, \Leftrightarrow \,\,} \right.} \right.\left\{ {\begin{array}{*{20}{c}}{a = - 1}\\{b = 2}\end{array}} \right.\)
Vậy hàm số cần tìm là: \(y = - {x^2} + 2x + 3.\)
b1: a, viết PT đường thẳng đi qua 2 điểm A(\(\frac{2}{\sqrt{3}}\), 2) và B(\(\sqrt{3}\) , 1)
b viết pt đường trung trực của đoạn AB