cho đường tròn (C) đi qua điểm A(1;-2) và tiếp xúc với đường thẳng x-y+1=0 tại M(1;2). Phương trình của đường tròn (c) là
Cho đường tròn tâm O và dây BC không đi qua O. Điểm A chuyển động rên cung lớn . Vẽ đường tròn tâm I đi qua điểm B và tiếp xúc với AC tại A. Vẽ đường tròn tâm K đi qua điểm C và tiếp xúc với AB tại A.CMR:
a) 4 điểm B,D,O,C cùng thuộc 1 đường tròn.
b) Đường thẳng AD luôn đi qua 1 điểm cố định.
a) Ta có đuờng tròn (I) tiếp xúc với AC tại A, theo tính chất góc tạo bởi tiếp tuyến và dây thì ^DAC = ^DBA
Tuơng tự ^DAB = ^DCA. Do đó ^BDC = ^DAB + ^DAC + ^DBA + ^DCA = 2(^DAB + ^DAC) = 2.^BAC = ^BOC
Suy ra 4 điểm B,D,O,C cùng thuộc một đuờng tròn theo quỹ tích cung chứa góc (đpcm).
b) Gọi đuờng thẳng AD cắt đường tròn đi qua 4 điểm B,O,D,C tại S khác D. Ta sẽ chỉ ra S cố định.
Thật vậy, gọi Dx là tia đối của tia DB. Ta có ^ODC = ^OBC = ^OCB = ^ODx => DO là phân giác ^CDx
Ta thấy hai đuờng tròn (O) và (I) cắt nhau tại A và B nên OI vuông góc AB
Mà AK vuông góc với AB (vì (K) tiếp xúc AB tại A) nên OI // AK. Tuơng tự OK // AI
Từ đây tứ giác AIOK là hình bình hành => IK chia đôi OA. Cũng dễ thấy IK là trung trực của AD
Theo đó IK chứa đuờng trung bình của \(\Delta\)AOD => IK // OD. Mà IK vuông góc AD nên OD vuông góc AD
Kết hợp với OD là phân giác của ^CDx => AD là phân giác của ^BDC (do ^CDx và ^BDC bù nhau)
Hay DS là phân giác của ^BDC. Lại có ^BDC là góc nội tiếp đuờng tròn đi qua B,D,O,C
=> S là điểm chính giữa (BC không chứa O của đuờng tròn (BOC)
Vì B,O,C cố định nên điểm chính giữa (BC không chứa O của (BOC) cố định => S cố định
Vậy AD luôn đi qua S cố định (đpcm).
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Đường thẳng (d) thay đổi đi qua M, không đi qua O và luôn cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D).
a) Chứng minh AMBO là tứ giác nội tiếp.
b) Chứng minh MC.MD=MA
c) Biết AB = 8cm, MO = 25 phần 3 . Tính bán kính đường tròn tâm O
Giúp tui câu c với nhaaa
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Đường thẳng (d) thay đổi đi qua M, không đi qua O và luôn cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D).
a) Chứng minh AMBO là tứ giác nội tiếp.
b) Chứng minh MC.MD=MA2
c) Chứng minh đường tròn ngọai tiếp tam giác OPQ luôn đi qua điểm cố định khác O
a: góc OAM+góc OBM=180 độ
=>OAMB nội tiếp
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
Câu 6. Cho hai điểm A B, phân biệt. hãy chọn câu đúng:
A. Chỉ có hai đường tròn đi qua hai điểm A và B .
B. Có vô số đường tròn đi qua A B, với tâm thuộc đường thẳng đi qua A và B .
C. Có vô số đường tròn đi qua A B, với tâm cách đều A và B .
D. Không có đường tròn nào đi qua A và B .
Câu 7. Tam giác có độ dài ba cạnh là 7 cm, 24 cm, 25 cm có bán kính đường tròn ngoại tiếp là:
A. 12 cm. B. 12,5 cm. C. 3,5 cm. D. 10 cm.
Câu 8. Đường tròn là hình có:
A. Hai trục đối xứng.
B. Một trục đối xứng.
C. Không có trục đối xứng.
D. Vô số trục đối xứng.
Câu 9. Cho tam giác ABC bất kì. Hãy chọn câu đúng:
A. Tâm của đường tròn nội tiếp trong tam giác là giao điểm của các đường trung trực của tam giác.
B. Tâm của đường tròn nội tiếp trong tam giác là giao điểm của các đường trung tuyến của tam giác.
C. Tâm của đường tròn nội tiếp trong tam giác là giao điểm của các đường phân giác của góc trong tam giác.
D. Tâm của đường tròn nội tiếp trong tam giác là giao điểm của các đường cao của tam giác
Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn (O). Qua điểm A dựng hai tiếp tuyến AM,AN đến đường tròn (O) với M,N là các tiếp điểm. Một đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm B và C (AB<AC, đường thẳng d không đi qua tâm O)
a) Chứng minh tứ giác AMON là tứ giác nội tiếp
b) Chứng minh AN\(^2\)=AB.AC
c) Hai tiếp tuyến của đường trong (O) tại B và C cắt nhau tại K. Chứng minh rằng điểm K luôn thuộc một đường thẳng cố định khi đường thẳng d thay đổi và đường thẳng d thỏa mãn điều kiện đề bài
a: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
b: Xét ΔANB và ΔACN có
góc ANB=góc ACN
góc NAB chung
=>ΔANB đồng dạng với ΔACN
=>AN^2=AB*AC
Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn (O). Qua điểm A dựng hai tiếp tuyến AM,AN đến đường tròn (O) với M,N là các tiếp điểm. Một đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm B và C (AB<AC, đường thẳng d không đi qua tâm O)
a) Chứng minh tứ giác AMON là tứ giác nội tiếp
b) Chứng minh AN=AB.AC
c) Hai tiếp tuyến của đường trong (O) tại B và C cắt nhau tại K. Chứng minh rằng điểm K luôn thuộc một đường thẳng cố định khi đường thẳng d thay đổi và đường thẳng d thỏa mãn điều kiện đề bài
Giúp mình với đang cần gấp lắm!!
a: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
b: Xét ΔANB và ΔACN có
góc ANB=góc ACN
góc NAB chung
=>ΔANB đồng dạng với ΔACN
=>AN^2=AB*AC
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Đường thẳng (d) thay đổi đi qua M, không đi qua O và luôn cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D).
a) Chứng minh AMBO là tứ giác nội tiếp.
b) Chứng minh MC.MD=MA\(^2\)
Cho đường tròn (O) và điểm C nằm nên ngoài đường tròn. Qua C kẻ tiếp tuyên CA, CB với đường tròn (A, B là tiếp điểm). Vẽ đường tròn (O') đi qua C và tiếp xúc với AB tại B, cắt (O) ở M. CMR đường thẳng AM đi qua TĐ của BC.
Cho đường tròn (O) và điểm C nằm nên ngoài đường tròn. Qua C kẻ tiếp tuyên CA, CB với đường tròn (A, B là tiếp điểm). Vẽ đường tròn (O') đi qua C và tiếp xúc với AB tại B, cắt (O) ở M. CMR đường thẳng AM đi qua TĐ của BC.
Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếng tuyến AM và AN tới đường tròn (M,N là hai tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O;R) tại B và C (AB<AC). Gọi I là trung điểm của BC.
Đường thẳng đi qua B, song song với AM, cắt MN tại E. CMR: IE song song MC