Những câu hỏi liên quan
PV
Xem chi tiết
NT
26 tháng 9 2021 lúc 14:03

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
MT
Xem chi tiết
NT
4 tháng 1 2022 lúc 11:32

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

Bình luận (0)
N5
Xem chi tiết
NT
24 tháng 10 2021 lúc 0:30

b: \(DA\cdot DB+EA\cdot EC\)

\(=HD^2+HE^2\)

\(=AH^2=HB\cdot HC\)

Bình luận (0)
NK
Xem chi tiết
NK
24 tháng 7 2021 lúc 9:20

câu c bài 1 là tích diện tích của tam giác AHM nhá'

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 9 2021 lúc 21:19

Ta có: BC=BH+CH

nên BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
SC
12 tháng 9 2021 lúc 21:17

Bình luận (0)
TT
Xem chi tiết
TH
30 tháng 9 2021 lúc 12:20

bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=152+202=625
  BC=25cm
* AH.BC=AB.AC
  AH.25=15.20
  AH.25=300
  AH=12cm

Bình luận (0)
TH
30 tháng 9 2021 lúc 12:26

tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
 AC2=252-152=400
 AC=20cm

Bình luận (0)
TN
Xem chi tiết
AH
24 tháng 11 2021 lúc 11:45

3 4 AB AC = là gì thế bạn? Bạn coi lại đề.

Bình luận (1)
NK
25 tháng 11 2021 lúc 15:38

Cho tam giác ABC vuông tại A có AB : AC = 3 : 4 và đường cao AH bằng 12cm. Khi đó độ dài đoạn thẳng CH bằng

đề là vậy phải ko

Bình luận (0)
WR
Xem chi tiết
HN
7 tháng 9 2016 lúc 19:27

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH.CH\Rightarrow x\left(25-x\right)=144\Leftrightarrow x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=9\\x=16\end{array}\right.\) (tm)

Nếu BH = 9 cm thì CH = 16 cm\(\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)

Bình luận (0)
NM
9 tháng 9 2016 lúc 22:23

Gỉa sử \(\Delta ABC\) có AB>AC

\(AB.AC=AH.BC=12.25=300\)

\(\Leftrightarrow2AB.AC=2.300=600\)

Áp dụng định lý Pytago cho \(\Delta ABC\) vuông tại A ta có:

\(AB^2+AC^2=BC^2=25^2=625\) (1)

\(\left(1\right)\Rightarrow AB^2+AC^2-2AB.AC=625-600\)

\(\Leftrightarrow\left(AB-AC\right)^2=25\Leftrightarrow AB-AC=5\)   (a)  (Vì AB>AC \(\Rightarrow AB-AC>0\))

\(\left(1\right)\Rightarrow AB^2+AC^2+2AB.AC=600+625=1225\)

\(\Leftrightarrow\left(AB+AC\right)^2=1225\Rightarrow AB+AC=35\) (b)

Cộng vế vs vế của (a) và (b) ta được: \(2AB=40\Rightarrow AB=20\)

                                                         \(\Rightarrow AC=AB-5=20-5=15\)

Xét \(\Delta ABC\) vuông tại A, \(AH\perp BC\)\(\Rightarrow\) theo hệ thức lượng trong tam giác vuông ta có:

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{20^2}{25}=16\)

\(\Rightarrow CH=BC-BH=25-16=9\)

 

Bình luận (1)
H24
13 tháng 9 2016 lúc 14:25

Sử dụng hệ thức lượng trong tam giác vuông thôi: 
AB*AC = AH*BC = 12*25 = 300 
AB^2 + AC^2 = BC^2 = 25^2 = 625 
giải hệ trên ta được : AB = 15, AC = 20 
AB^2 = BH*BC=> BH = AB^2/BC = 9 
AH^2 = BH*CH=> CH = AH^2/BH = 12^2/9 = 16 

NGOÀI RA HỆ PT TRÊN CÒN 1 NGHIỆM NỮA LÀ AB=20,AC=15 

Bình luận (0)
NT
Xem chi tiết