Cho x,y số thực thỏa mãn:x2 +2xy+7(x+y)+2y2+10=0
Tìm Min và Max: S=x+y+3
Cho x,y số thực thỏa mãn:x2 +2xy+7(x+y)+2y2+10=0
Tìm Min và Max: S=x+y+3
Ta có: \(x^2+2xy+7(x+y)+2y^2+10=0\)
<=> \((x^2+2xy+y^2)+7(x+y)+y^2+10=0\)
<=>(1)
Đặt t=x+y
=>(1)<=>\(y^2+t^2+7t+10=0
\)
Phương trình có nghiệm khi \(\Delta\)'\(\ge\)0
<=>\(t^2+7t+10=0
\) \(\le\)0
<=> -5\(\le\)t\(\le\)-2
=>Max S=1 khi t=-2<=>y=0;x=-2
Min S=-2 khi t=-5<=>y=0;x=-5
Xét tính đơn điệu của hàm số \(y=\sqrt{x-2}+\sqrt{4-x}\)
Lời giải:
MXĐ: \(x\in [2;4]\)
Ta có với \(x\neq 2; x\neq 4\) thì:
\(y'=(\sqrt{x-2}+\sqrt{4-x})'=\frac{1}{2\sqrt{x-2}}-\frac{1}{2\sqrt{4-x}}\)
\(y'=0\Leftrightarrow \sqrt{4-x}=\sqrt{x-2}\Leftrightarrow x=3\)
Lập bảng biến thiên ta suy ra hàm số đồng biến trên \((2;3)\), nghịch biến trên \((3,4)\)
Câu 1: cho hàm số y=x^3 - 3mx^2 +2 (Cm). Tìm các giá trị của m để đồ thị ( Cm) có 2 cực trị A,B. Và đường thẳng A.B đi qua điểm I(1;0).
Câu 2: Hàm số y= (2x^2 -1)^3 × (x^2-1)^2 có bao nhiêu cực trị?
Mấy bạn giúp mình vs nhak. Mình đg cần gâos lắm.
Câu 1:
\(y=x^3-3mx^2+2\Rightarrow y'=3x^2-6mx\)
\(y'=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=2m\end{matrix}\right.\)
Để $(C_m)$ có 2 cực trị thì \(y'=0\) phải có 2 nghiệm , tức là $m\neq 0$
Khi đó: Hai cực trị của đths là: \(A(0; 2); B(2m, 2-4m^3)\)
Gọi ptđt $AB$ là $y=ax+b$
\(\Rightarrow \left\{\begin{matrix} 2=a.0+b\\ 2-4m^3=2ma+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} b=2\\ a=-2m^2\end{matrix}\right.\)
Vậy PTĐT $AB$ là: \(y=-2m^2x+2\)
$I(1,0)$ đi qua nên \(0=-2m^2+2\Rightarrow m=\pm 1\)
Câu 2:
Ta có:
\(y=(2x^2-1)^3(x^2-1)^2\)
\(\Rightarrow y'=3.4x(2x^2-1)^2(x^2-1)^2+2.2x(2x^2-1)^3(x^2-1)\)
\(=4x(x^2-1)(2x^2-1)^2(5x^2-4)\)
Vì $(2x^2-1)^2$ là lũy thừa số mũ chẵn nên tại \(x=\pm \sqrt{\frac{1}{2}}\) thì đths không đổi hướng biến thiên mà tiếp tục đơn điệu tăng hoặc đơn điệu giảm nên nó không phải điểm cực trị
Do đó các điểm cực trị của đths thỏa mãn: \(4x(x^2-1)(5x^2-4)=0\Leftrightarrow x=0; x=\pm 1; x=\frac{\pm 2}{\sqrt{5}}\)
Tức là có 5 cực trị
Tìm tất cả các giá trị của a để hs y = ax - sinx + 3 đồng biến trên R.
Mấy bạn giúp mik nha
Lời giải:
Ta có: \(y=ax-\sin x+3\)
\(\Rightarrow y'=a-\cos x\)
Để hàm số $y$ đồng biến trên $R$ thì:
\(y'\geq 0, \forall x\in\mathbb{R}\Leftrightarrow a-\cos x\geq 0\)
\(\Leftrightarrow a\geq \cos x, \forall x\in\mathbb{R}\Leftrightarrow a\geq max(\cos x)\)
Mà \(\cos x\leq 1\rightarrow \max (\cos x)=1\Rightarrow a\geq 1\)
Vậy \(a\in [1;+\infty)\)
Trong không gian Oxyz, cho hai điểm A(1;2;1), B(2;-1;3). Tìm điểm M trên mp Oxyz sao cho MA2 - 2MB2 lớn nhất
A.\(M\left(\dfrac{3}{2};\dfrac{1}{2};0\right)\) B. \(M\left(\dfrac{1}{2};-\dfrac{3}{2};0\right)\) C. M(0;0;5) D. M(3;-4;0)
Lời giải:
Chọn điểm $I$ sao cho \(\overrightarrow{IA}-2\overrightarrow{IB}=0\)
\(\Leftrightarrow (1-x_I, 2-y_I, 1-z_I)-2(2-x_I, -1-y_I, 3-z_I)=0\)
\(\Rightarrow \left\{\begin{matrix} 1-x_I-2(2-x_I)=0\\ 2-y_I-2(-1-y_I)=0\\ 1-z_I-2(3-z_I)=0\end{matrix}\right.\Rightarrow I(3,-4, 5)\)
Có:
\(MA^2-2MB^2=(\overrightarrow {MI}+\overrightarrow{IA})^2-2(\overrightarrow{MI}+\overrightarrow{IB})^2\)
\(=-MI^2+IA^2-2IB^2+2\overrightarrow{MI}(\overrightarrow{IA}-2\overrightarrow{IB})\)
\(=-MI^2+IA^2-2IB^2\)
Do đó để \(MA^2-2MB^2\) max thì \(MI^2\) min. Do đó $M$ là hình chiếu vuông góc của $I$ xuống mặt phẳng $Oxy$
Gọi d là đường thẳng đi qua $I$ và vuông góc với (Oxy)
Khi đó: \(d:\left\{\begin{matrix} x=3\\ y=-4\\ z=5+t\end{matrix}\right.\)
$M$ thuộc d và $(Oxy)$ thì ta có thể suy ra ngay đáp án D
cho 3 số thực dương a,b,c t/m ab+bc+ac=3 tìm max \(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{a^2+c^2+1}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\((a^2+b^2+1)(1+1+c^2)\geq (a+b+c)^2\)
\(\Leftrightarrow a^2+b^2+1\geq \frac{(a+b+c)^2}{c^2+2}\Rightarrow \frac{1}{a^2+b^2+1}\leq \frac{c^2+2}{(a+b+c)^2}\)
Thiết lập tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow A=\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\leq \frac{6+a^2+b^2+c^2}{(a+b+c)^2}\)
\(\Leftrightarrow A\leq \frac{2(ab+bc+ac)+a^2+b^2+c^2}{(a+b+c)^2}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)
Vậy \((\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1})_{\max}=1\Leftrightarrow a=b=c=1\)
Cho 2 tập hợp A và B. Biết tập hợp B khác rỗng, số phần tử của tập B gấp đôi số phần tử của tập A∩B và A∪B có 10 phần tử. Hỏi tập A và B có bao nhiêu phần tử? Hãy xét các trường hợp xảy ra và dùng biểu đồ Ven minh họa?
1.M(1,2,1) ,Viết ptmp (P) qua M cắt Ox Oy Oz lần lượt tại A B C sao cho (1/OA^2 +1/OB^2 + 1/OC^2) min
Lời giải:
Giả sử \(A=(a,0,0); B=(0,b,0); C=(0,0,c)\)
Phương trình mặt phẳng $(P)$ là:
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) (đây là dạng PTMP theo đoạn chắn rất quen thuộc)
Vì \(M\in (P)\Rightarrow \frac{1}{a}+\frac{2}{b}+\frac{1}{c}=1(*)\)
Ta có:
\(A=\frac{1}{OA^2}+\frac{1}{OB^2}+\frac{1}{OC^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
Áp dụng BĐT Bunhiacopxky có:
\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)(1+2^2+1)\geq \left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow 6A\geq 1\Leftrightarrow A\geq \frac{1}{6}\). Điểm "min" xảy ra khi : \(\frac{1}{a}=\frac{1}{2b}=\frac{1}{c}\)
Đặt \(\frac{1}{a}=\frac{1}{2b}=\frac{1}{c}=t\Rightarrow \left\{\begin{matrix} a=\frac{1}{t}\\ b=\frac{1}{2t}\\ c=\frac{1}{t}\end{matrix}\right.\). Thay vào \((*)\Rightarrow t=\frac{1}{6}\)
Thay vào ptmp ban đầu suy ra ptmp (P) là:
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow xt+2yt+zt=1\)
\(\Leftrightarrow \frac{x}{6}+\frac{y}{3}+\frac{z}{6}=1\) hay \(x+2y+z-6=0\)
Số các giá trị của tham số m để hàm số y=(x-m^2 -1)/(x-m) có giá trị lớn nhất trên đoạn [0;4] bằng -6 là ?
Lời giải:
ĐK: \(m\in (-\infty; 0)\cup (4;+\infty)\)
\(y=\frac{x-m^2-1}{x-m}=1-\frac{m^2-m+1}{x-m}\)
\(\Rightarrow y'=\frac{m^2-m+1}{(x-m)^2}=\frac{(m-\frac{1}{2})^2+\frac{3}{4}}{(x-m)^2}>0\)
Do đó hàm số đã cho luôn đồng biến
\(\Rightarrow y(x)\leq y(4)\Leftrightarrow y_{\max}=y(4)=\frac{3-m^2}{4-m}\)
Ta có: \(\frac{3-m^2}{4-m}=-6\Leftrightarrow m^2+6m-27=0\)
\(\Leftrightarrow (m-3)(m+9)=0\) \(\Leftrightarrow \left[\begin{matrix} m=3(L)\\ m=-9(C)\end{matrix}\right.\)
Vậy có 1 giá trị m thỏa mãn .
Xét các số phức z thỏa mãn |z - 4 -3i| = \(\sqrt{5}\). Tiính P= a+ b khi | z +1 -3i| + | z-1+i| đạt giá trị lớn nhất
đặc \(z=a+bi\) với \(a;b\in R;i^2=-1\)
ta có : \(\left|z-4-3i\right|=\sqrt{5}\Leftrightarrow\left(a-4\right)^2+\left(b-3\right)^2=5\)
\(\Leftrightarrow a^2+b^2=8x+6x-20\)
đặc \(A=\left|z+1-3i\right|+\left|z-1+i\right|=\sqrt{\left(a+1\right)^2+\left(b-3\right)^2}+\sqrt{\left(a-1\right)^2+\left(b+1\right)^2}\)
áp dụng bunhiacopxki ta có :
\(A\le\sqrt{2\left[\left(a+1\right)^2+\left(b-3\right)^2+\left(a-1\right)^2+\left(b+1\right)^2\right]}\)
\(\Leftrightarrow A\le\sqrt{2\left(2a^2+2b^2-4b+12\right)}=\sqrt{2\left(16a+12b-40-4b+12\right)}\)
\(\Leftrightarrow A\le\sqrt{2\left[16\left(a-4\right)+8\left(b-3\right)\right]+120}\)
áp dụng bunhiacopxki lần nữa ta có :
\(A\le\sqrt{2\left(16^2+8^2\right)\left[\left(a-4\right)^2+\left(b-3\right)^2\right]+120}\)
\(\Leftrightarrow A\le2\sqrt{830}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(a+1\right)^2+\left(b-3\right)^2=\left(a-1\right)^2+\left(b+1\right)^2\\\dfrac{a-4}{16}=\dfrac{b-3}{8}\\\left(a-4\right)^2+\left(b-3\right)^2=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\\\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\end{matrix}\right.\)
khi \(\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\Rightarrow P=a+b=10\)
khi \(\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\Rightarrow P=a+b=4\)
vậy \(P=10;P=4\)
Gọi s là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn z.z ngang =1 và / z+căn3+i/ =m tìm số phần tử của s
Lời giải:
Đặt \(z=a+bi(a,b\in\mathbb{R})\)
Từ \(z\overline{z}=1\Rightarrow a^2+b^2=1\)
Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(O(0;0)\) bán kính \(R=1\)
Lại có:
\(|z+\sqrt{3}+i|=m(m\geq 0)\)
\(\Leftrightarrow |(a+\sqrt{3})+i(b+1)|=m\)
\(\Leftrightarrow (a+\sqrt{3})^2+(b+1)^2=m^2\)
Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(I(-\sqrt{3}; -1)\) bán kính \(R'=m\)
Để số phức $z$ tồn tại duy nhất thì \((O); (I) \) phải tiếp xúc trong hoặc tiếp xúc ngoài.
Nếu \((O); (I)\) tiếp xúc ngoài:
\(\Rightarrow OI=R+R'\Leftrightarrow 2=1+m\Leftrightarrow m=1\)
Nếu \((O),(I)\) tiếp xúc trong.
TH1: \((O)\) nằm trong $(I)$
\(OI+R=R'\Leftrightarrow 2+1=m\Leftrightarrow m=3\)
TH2: \((I)\) nằm trong $(O)$
\(OI+R'=R\Leftrightarrow 2+m=1\Leftrightarrow m=-1\) (loại vì \(m\geq 0\) )
Do đó \(S=\left\{1;3\right\}\) hay số phần tử của S là 2.