Do góc A tù \(\Rightarrow cosA< 0\Rightarrow cosA=-\sqrt{1-sin^2A}=-\dfrac{4}{5}\)
Áp dụng định lý hàm cos:
\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=\sqrt{130}\)
\(S_{ABC}=\dfrac{1}{2}AB.AC.sinA=21\)
\(AM=\sqrt{\dfrac{2\left(AB^2+AC^2\right)-BC^2}{4}}=\dfrac{3\sqrt{2}}{2}\)
a.
\(x^2+4\left(m+1\right)x+m^2+m>0;\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=4\left(m+1\right)^2-\left(m^2+m\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left(m+1\right)\left(3m+4\right)< 0\)
\(\Rightarrow-\dfrac{4}{3}< m< -1\)
b.
Đặt \(f\left(x\right)=3x^2-2\left(m+5\right)x-m^2+2m+8\)
BPT đúng với mọi \(x\in\left[-1;1\right]\) khi và chỉ khi:
\(\left\{{}\begin{matrix}f\left(-1\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-2\left(m+5\right)-m^2+2m+8\le0\\3+2\left(m+5\right)-m^2+2m+8\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2\ge1\\-m^2+4m+21\le0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\le-3\\m\ge7\end{matrix}\right.\)
Với mọi a;b ta luôn có:
\(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab=2.10=20\)
giải thik hộ em tại sao lại khác 6 ạ
\(\left\{{}\begin{matrix}x^2+2y^2-10xy+3x-5y+9=0\\x^2-2y^2-xy+x+7y-6=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\left(x+21\right)+y\left(x-33\right)=2\left(y^2+50\right)\\\sqrt{x+2}+2\sqrt{y+11}=\sqrt{\left(4y-x+14\right)^3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\sqrt{2x^2-y^2}=y^2-2x^2+3\\x^3-2y^3=y-2x\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+xy+y^2=3\\7\left(x^5+y^5\right)=31\left(x^3+y^3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=3\\21\left(x^5+y^5\right)=31.3\left(x^3+y^3\right)\end{matrix}\right.\)
\(\Rightarrow31\left(x^2+xy+y^2\right)\left(x^3+y^3\right)=21\left(x^5+y^5\right)\)
\(\Rightarrow10x^5+31x^4y+31x^3y^2+31x^2y^3+31xy^4+10y^5=0\)
\(\Rightarrow\left(x+y\right)\left(x+2y\right)\left(2x+y\right)\left(5x^2-2xy+5y^2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}y=-x\\y=-\dfrac{1}{2}x\\y=-2x\\y=x=0\end{matrix}\right.\) \(\Rightarrow...\)
giải bất phương trình
\(\Rightarrow2\left(2x-1\right)\ge5\left(x-1\right)\)
\(\Leftrightarrow4x-2\ge5x-5\)
\(\Leftrightarrow-x\ge7\)
\(\Leftrightarrow x\le-7\)