Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

TT

Xét các số thực a, b thỏa mãn \(\dfrac{1}{4}< b< a< 1\). Biểu thức \(P=\log_a\left(b-\dfrac{1}{4}\right)-\log_{\dfrac{a}{b}}\sqrt{b}\) đạt giá trị nhỏ nhất khi ?

NV
4 tháng 1 2021 lúc 22:44

Ta có: 

\(\left(b-\dfrac{1}{2}\right)^2\ge0\) <=> \(b^2-b+\dfrac{1}{4}\ge0\) <=>\(b-\dfrac{1}{4}\le b^2\)

Mà : 

a<1 => \(log_a\left(b-\dfrac{1}{4}\right)\ge log_ab^2=2log_ab\)

P=\(log_a\left(b-\dfrac{1}{4}\right)-\dfrac{1}{2}log_{\dfrac{a}{b}}b=log_a\left(b-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{log_ab}{1-log_ab}\ge2log_ab-\dfrac{1}{2}.\dfrac{log_ab}{1-log_ab}\)

Đặt t=logab

Do b<a<1 => t=logab >1

Khi đó \(P\ge2t+\dfrac{t}{2t-2}=f\left(t\right)\). Khảo sát f(t) trên (1;+\(\infty\)) ta đc

P\(\ge\)f(t) \(\ge\) f\(\left(\dfrac{3}{2}\right)\) = \(\dfrac{9}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
NK
Xem chi tiết
NK
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
Y3
Xem chi tiết
PP
Xem chi tiết