Violympic toán 8

H24

Với n thuộc N

Chứng minh: \(A=\dfrac{n^5}{120}+\dfrac{n^4}{12}+\dfrac{7n^3}{24}+\dfrac{5n^2}{12}+\dfrac{n}{5}\)có giá trị nguyên

HN
10 tháng 1 2018 lúc 22:45

\(A=\dfrac{n^5}{120}+\dfrac{n^4}{12}+\dfrac{7n^3}{24}+\dfrac{5n^2}{12}+\dfrac{n}{5}\)

\(=\dfrac{n^5}{120}+\dfrac{10n^4}{120}+\dfrac{35n^3}{120}+\dfrac{50n^2}{120}+\dfrac{24n}{120}\)

\(=\dfrac{n^5+10n^4+35n^3+50n^2+24n}{120}\)

\(=\dfrac{n\left(n^4+10n^3+35n^2+50n+24\right)}{120}\)

\(=\dfrac{n\left(n^4+n^3+9n^3+9n^2+26n^2+26n+24n+24\right)}{120}\)

\(=\dfrac{n\left[n^3\left(n+1\right)+9n^2\left(n+1\right)+26n\left(n+1\right)+24\left(n+1\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n^3+9n^2+26n+24\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n^3+2n^2+7n^2+14n+12n+24\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left[n^2\left(n+2\right)+7n\left(n+2\right)+12\left(n+2\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n^2+7n+12\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n^2+3n+4n+12\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left[n\left(n+3\right)+4\left(n+3\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}{120}\)

Để A có giá trị nguyên thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

Thật vậy, vì A là tích của 5 số tự nhiên liên tiếp nên trong 5 số đó có 2 số chẵn liên tiếp (tích chia hết cho 8),1 số chia hết cho 3, 1 số chia hết cho 5

mà 8, 3, 5 đôi một nguyên tố cùng nhau nên \(A=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)⋮8.3.5=120\)

Vậy A có giá trị nguyên với mọi n \(\in\) N.

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
TB
Xem chi tiết
NT
Xem chi tiết
JL
Xem chi tiết
LT
Xem chi tiết
TN
Xem chi tiết
BB
Xem chi tiết