Chương II : Hàm số và đồ thị

NC

với n ≥ 2. CMR:

A=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+.......+\(\frac{1}{n^2}\)<1

LV
23 tháng 3 2019 lúc 12:25

Ta có:

\(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4}.....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\\ =1-\frac{1}{n}< 1\\ \Rightarrow A< 1\)

Bình luận (0)
NT
23 tháng 3 2019 lúc 18:13

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right).n}\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right).n}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\Rightarrow A< 1-\dfrac{1}{n}< 1\)

Vậy \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

Bình luận (0)

Các câu hỏi tương tự
KH
Xem chi tiết
LT
Xem chi tiết
ND
Xem chi tiết
TL
Xem chi tiết
Xem chi tiết
DN
Xem chi tiết
QL
Xem chi tiết
NG
Xem chi tiết
PH
Xem chi tiết