Violympic toán 7

LA

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

vẽ hình luôn cho mình

NV
11 tháng 2 2018 lúc 10:43

A x y B D C E M O

a) Ta có : \(\left\{{}\begin{matrix}AD=AB\\AE=AC\end{matrix}\right.\left(gt\right)\)

Lại có : \(\left\{{}\begin{matrix}B,C\in Ax\\D,E\in Ay\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AC=AB+BC\\AE=AD+ED\end{matrix}\right.\)

Suy ra : \(AC=AE\)

Xét \(\Delta ABE,\Delta ACD\) có:

\(AB=AD\left(gt\right)\)

\(\widehat{A}:Chung\)

\(AC=AE\left(cmt\right)\)

=> \(\Delta ABE=\Delta ACD\left(c.g.c\right)\)

=> \(BE=CD\) (2 cạnh tương ứng)

b) Xét \(\Delta OBC,\Delta ODE\) có :

\(\widehat{BOC}=\widehat{DOE}\) (đối đỉnh)

\(BC=DE\) (gt)

\(\widehat{OCB}=\widehat{OED}\) (do \(\Delta ABE=\Delta ACD-cmt\))

=> \(\Delta OBC=\Delta ODE\left(g.c.g\right)\)

c) Xét \(\Delta ACM,\Delta AEM\) có :

\(AC=AE\left(cmt\right)\)

\(AM:Chung\)

\(CM=ME\) (M là trung điểm của CE)

=> \(\Delta ACM=\Delta AEM\left(c.c.c\right)\)

=> \(\widehat{AMC}=\widehat{AME}\) (2 góc tương ứng)

Mà : \(\widehat{AMC}+\widehat{AME}=180^{^O}\left(kềbù\right)\)

=> \(\widehat{AMC}=\widehat{AME}=90^{^O}\)

Nên : \(AM\perp CE\)

Ta có : \(\left\{{}\begin{matrix}AM\perp CE\left(cmt\right)\\CM=EM\text{(M là trung điểm của CE)}\end{matrix}\right.\)

Do đó : AM là đường trung trực của CE

=> đpcm

Bình luận (1)

Các câu hỏi tương tự
MN
Xem chi tiết
DT
Xem chi tiết
PC
Xem chi tiết
CD
Xem chi tiết
DY
Xem chi tiết
TV
Xem chi tiết
YV
Xem chi tiết
RP
Xem chi tiết
LL
Xem chi tiết