Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.

PT

Trong mặt phẳng với hệ trục tọa độ Oxy, hãy tính diện tích tam giác ABC biết rằng hai điểm H(5;5) và I(5;4) lần lượt là trực tâm và tâm đường tròn ngoại tiếp tam giác ABC và x+y-8=0 là phương trình đường thẳng chứa cạnh BC của tam giác.

NB
5 tháng 4 2016 lúc 21:27

Kéo dài đường cao AH lần lượt cắt BC và đường tròn ngoại tiếp tam giác ABC tại hai điển E và K, ta dễ dàng chứng minh được E là trung điểm HK

Đường cao \(AH\perp BC\) nên có phương trình \(x-y=0\), E là giao điểm của BC và AH \(\Rightarrow E\left(4;4\right)\) và H là trung điểm \(HK\Rightarrow K\left(3;3\right)\), suy ra bán kính đường tròn ngoại tiếp tam giác ABC là \(R=IK=\sqrt{5}\)

\(\Rightarrow\) phương trình đường tròn là \(\left(x-5\right)^2+\left(y-4\right)^2=5,\left(C\right)\)

Vậy hai điểm B, C là nghiệm của hệ hai phương trình đường thẳng BC và đường tròn (C) \(\Rightarrow B\left(3;5\right);C\left(6;2\right)\) và đỉnh A là nghiệm hệ của đường cao AH và đường tròn (C) \(\Rightarrow A\left(6;6\right)\)

Diện tích tam giác ABC là :

\(S_{ABC}=\frac{1}{2}d\left(A,BC\right).BC=\frac{1}{2}\frac{\left|6+6-8\right|}{\sqrt{2}}.3\sqrt{2}=6\)

Bình luận (0)

Các câu hỏi tương tự
HM
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
LT
Xem chi tiết
HP
Xem chi tiết
NV
Xem chi tiết
SP
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết