Bài 14. Phương trình mặt phẳng

H24

Trong không gian Oxyz, cho hai mặt phẳng (P): x + 3y + z + 2 = 0 và (Q): x + 3y + z + 5 = 0.

a) Chứng minh rằng (P) và (Q) song song với nhau.

b) Lấy một điểm thuộc (P), tính khoảng cách từ điểm đó đến (Q). Từ đó tính khoảng cách giữa hai mặt phẳng (P) và (Q).

H24
27 tháng 10 2024 lúc 21:36

a) Mặt phẳng (P) có một vectơ pháp tuyến là: \(\overrightarrow {{n_P}}  = \left( {1;3;1} \right)\), mặt phẳng (Q) có một vectơ pháp tuyến là: \(\overrightarrow {{n_Q}}  = \left( {1;3;1} \right)\). Vì \(\overrightarrow {{n_P}}  = \overrightarrow {{n_Q}} \) và \(2 \ne 5\) nên (P) và (Q) song song với nhau.

b) Lấy điểm A(0; 0; -2) thuộc mặt phẳng (P). Ta có: \(d\left( {A,\left( Q \right)} \right) = \frac{{\left| {0 + 3.0 - 2 + 5} \right|}}{{\sqrt {{1^2} + {3^2} + {1^2}} }} = \frac{{3\sqrt {11} }}{{11}}\)

Vì (P) và (Q) song song với nhau nên \(d\left( {\left( P \right),\left( Q \right)} \right) = d\left( {A,\left( Q \right)} \right) = \frac{{3\sqrt {11} }}{{11}}\).

Bình luận (0)