giải hộ mình với
khi viết 6^2016 trong hệ thập phân có các chữ số là n, khi đó n có giá trị bằng
có bao nhiêu giá trị nguyên của tham số m để phương trinh \(15^x-5^x-3^x=\dfrac{m}{10}\) có 2 nghiệm thực phân biệt
Cho hàm đa thức \(y=\left[f\left(x^2+2x\right)\right]'\) có đồ thị cắt trục \(Ox\) tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số \(m=2022m\in Z\) để hàm số \(g\left(x\right)=f\left(x^2-2\left|x-1\right|-2x+m\right)\) có 9 điểm cực trị?
Giúp mình với ạ, mình cảm ơn nhiều♥
Bài 1: Phương trình\(\log_{2} ^3(x-1)-27y^3+8^y+1-x\) có bao nhiêu \((x;y)\) nghiệm thuộc \([8^{1992}; 8^{2020}]\)
Bài 2: Tìm tập hợp số thực m để phương trình \(2^{2x-1}+m×2^x+2m-2=0\) có 2 nghiệm thực phân biệt thuộc đoạn [1;2]
Bài 3: Tìm các số nguyên m để phương trình \(\log_{\dfrac{1}{2}}^{2} (x-2)^3+4(m-5) log _{\dfrac{1}{2}}\dfrac{1}{x-2}+4m-4\) có nghiệm thuộc \([\dfrac{5}{2};4]\)
Bài 4: Cho phương trình \((m-2)×log_{2} ^2 (x-4)-(2m+1)log_{\dfrac{1}{2}} (x-4)+m+2=0.\) Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn 4<x1, x2<6
có bao nhiêu giá trị nguyên của tham số m thuộc (-8;+vô cực) để phương trình sau có nhiều hơn 2 nghiệm phân biệt : \(x^2+x\left(x-1\right)2^{x+m}+m=\left(2x^2-x+m\right)\cdot2^{x-x^2}\)
cho hàm số \(f\left(x\right)=x^3+2x-5^m\). có bao nhiêu giá trị nguyên của m thuộc đoạn [-6;6] để bất phương trình f(f(x)) \(\ge\) x đúng vs mọi x thuộc (2;6)
Hỏi có bao nhiêu số nguyên âm a sao cho \(\dfrac{1}{9^x-3}+\dfrac{1}{3^x-9}=x+\left|x-4\right|+a\) có hai nghiệm phân biệt
Cho phương trình: \(\left(x^2-1\right).log^2\left(x^2+1\right)-m\sqrt{2\left(x^2-1\right)}.log\left(x^2+1\right)+m+4=0\). Có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] để phương trình đã cho có 2 nghiệm phân biệt thỏa mãn \(1\le|x|\le3\)
Cho phương trình \(\left(4log_2^2x+log_2x-5\right)\sqrt{7^x-m}=0\). Có bao nhiêu giá trị thực của tham số m để phương trình đã cho có đúng hai nghiệm phân biệt