\(S=2\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{101.106}\right)\)
\(S=2\left(1-\frac{1}{106}\right)\)
\(S=\frac{210}{106}=\frac{105}{53}\)
\(S=2.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{101.106}\right)\)
\(S=2.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-...-\frac{1}{101}+\frac{1}{101}-\frac{1}{106}\right)\)
\(S=2.\left[1+\left(\frac{-1}{6}+\frac{1}{6}\right)+\left(\frac{-1}{11}\frac{1}{11}\right)+...+\left(\frac{-1}{101}+\frac{1}{101}\right)-\frac{1}{106}\right]\)
\(S=2.\left[1+0+0+...+0-\frac{1}{106}\right]\)
\(S=2.\left[1-\frac{1}{106}\right]\)
\(S=2.\frac{105}{106}\)
\(S=\frac{10}{1.6}+\frac{10}{6.11}+...+\frac{10}{101.106}\)
=\(2\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{101.106}\right)\)
\(=2\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{101}+\frac{1}{106}\right)\)
\(=2\left(1-\frac{1}{106}\right)=2.\frac{105}{106}=\frac{105}{53}\)