\(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
\(=\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+...+\dfrac{1}{30.33}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{3.6}+\dfrac{3}{6.9}+\dfrac{3}{9.12}+...+\dfrac{3}{30.33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{33}\right)=\dfrac{1}{3}.\dfrac{10}{33}=\dfrac{10}{99}\)