Chương III : Phân số

NS

Tính nhanh :

\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\)

MV
25 tháng 6 2018 lúc 14:45

\(\dfrac{1}{A}=\dfrac{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}\)

\(\dfrac{1}{A}=1-\dfrac{\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}\)

\(\dfrac{1}{A}=1-\dfrac{\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}{\dfrac{3.4+2.4-2.3}{2.3.4}}\)

\(\dfrac{1}{A}=\dfrac{1}{3.4+2.4-2.3}\)

\(\dfrac{1}{A}=1-\dfrac{1}{14}\) \(=\dfrac{13}{14}\)

\(A=\dfrac{14}{13}\)

Bình luận (0)
MV
25 tháng 6 2018 lúc 14:55

Cách 2:

\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\) ( 1 )

Có: \(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\)\(=\dfrac{12}{24}+\dfrac{8}{24}-\dfrac{6}{24}=\dfrac{14}{24}\)

Thay \(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\) \(=\dfrac{14}{24}\) vào ( 1 ), ta có:

\(\dfrac{\dfrac{14}{24}}{\dfrac{14}{24}-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\) \(=\dfrac{\dfrac{14}{24}}{\dfrac{14}{24}-\dfrac{1}{24}}\) \(=\dfrac{\dfrac{14}{24}}{\dfrac{13}{24}}\) \(=\dfrac{14}{24}:\dfrac{13}{24}=\dfrac{14.24}{13.24}=\dfrac{14}{13}\)

Vậy \(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\) \(=\dfrac{14}{13}\).

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
ND
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
LD
Xem chi tiết
NL
Xem chi tiết