Ôn tập toán 6

CB

Tinh nhanh:

\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) +...+ \(\dfrac{2}{99.101}\) b) \(\dfrac{5}{1.3}\) +\(\dfrac{5}{3.5}\) + \(\dfrac{5}{5.7}\) + ... + \(\dfrac{5}{99.101}\)

HELP MEkhocroi

MV
23 tháng 5 2017 lúc 14:39

\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)

\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\\ =\dfrac{5}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{5}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\dfrac{100}{101}\\ =\dfrac{250}{101}\)

Bình luận (1)
TH
23 tháng 5 2017 lúc 15:09

\(a,\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

Bình luận (2)
JP
23 tháng 5 2017 lúc 14:41

a) \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

= \(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

= \(1-\dfrac{1}{101}\)

= \(\dfrac{100}{101}\)

b) \(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{99.101}\)

= \(\dfrac{1}{3}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

= \(\dfrac{1}{3}\left(1-\dfrac{1}{101}\right)\)

= \(\dfrac{1}{3}.\dfrac{100}{101}\)

= \(\dfrac{100}{303}\)

Bình luận (2)

Các câu hỏi tương tự
DT
Xem chi tiết
HN
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
DD
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
AJ
Xem chi tiết
TT
Xem chi tiết