\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}:\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
Bài 1: Cho A=\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
a) Chứng minh: A=\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}\)
b) Chứng minh: A<\(\dfrac{5}{6}\)
1. Tính:
a.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)
b.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
2. Tìm x , biết:
a. \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}\)
b. \(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)
bài này ko được coppy trên mạng
\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}:\dfrac{1}{1-2}+\dfrac{1}{2-3}+...+\dfrac{1}{99-100}\)
A= \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
Chứng minh :
\(\dfrac{1}{2}\) < \(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+....+\dfrac{1}{100}\) < 1
BT3: Tìm x, biết
5) \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)-2x=\dfrac{1}{2}\)
BT2: Tìm x, biết
1) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{x.\left(x+1\right)}=\dfrac{2016}{2017}\)
Tính nhanh
\(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}....\dfrac{99^2}{99.100}\)
\(\left(\dfrac{2}{175}-\dfrac{7}{25}+\dfrac{3}{5}\right).\left(\dfrac{4}{11}+\dfrac{3}{121}-\dfrac{47}{121}\right)\)
\(\dfrac{-2}{5}\left(\dfrac{5}{17}-\dfrac{9}{15}\right)-\dfrac{2}{5}\left(\dfrac{2}{17}+\dfrac{-2}{5}\right)\)
Phiền giúp gấp được không ạ? Tối nay nữa thôi :(((