j) \(\dfrac{-3}{4}\) + \(\dfrac{2}{7}\) + \(\dfrac{-1}{4}\) +\(\dfrac{3}{5}\) +\(\dfrac{5}{7}\)
k) \(\dfrac{-2}{17}\)+ \(\dfrac{15}{23}\) + \(\dfrac{-15}{17}\) + \(\dfrac{4}{19}\) +\(\dfrac{8}{23}\)
1) \(\dfrac{5}{13}\) +\(\dfrac{-5}{17}\) + \(\dfrac{-20}{41}\) + \(\dfrac{8}{13}\) +\(\dfrac{-21}{41}\)
2) \(\dfrac{1}{5}\) + \(\dfrac{-2}{9}\) + \(\dfrac{-7}{9}\) + \(\dfrac{4}{5}\) +\(\dfrac{16}{17}\)
3) \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) +\(\dfrac{2}{7.9}\) +....................+ \(\dfrac{2}{99.101}\)
Bài 1 : Tìm các số nguyên x , biết :
a) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{13}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
b) \(\left(\dfrac{31}{20}-\dfrac{26}{45}\right).-\dfrac{36}{35}< x< \left(\dfrac{51}{56}+\dfrac{8}{21}+\dfrac{1}{3}\right).\dfrac{8}{13}\)
Bài 2 :
C = \(\dfrac{-1}{3}.\dfrac{141}{17}-\dfrac{39}{9}.\dfrac{-1}{7}\)
Thực hiện phép tính ( tính nhanh nếu có thể )
a, -5/21 + -2/21 + 8/24
b, 4/11 . -2/7 + 4/11 . -4/7 + 4/11 . -1/7
c, \(10\dfrac{5}{9}\) - ( \(3\dfrac{5}{7}\) + \(4\dfrac{5}{9}\) )
d, 1/3 + \(1\dfrac{3}{4}\) - ( \(1\dfrac{3}{4}\) - 80% )
e, \(5\dfrac{3}{5}\) + \(7\dfrac{21}{48}\) : 10/7 - \(5\dfrac{21}{48}\) : 10/7
f, -5/7 . 2/11 - 5/11 . 9/7 + \(2\dfrac{5}{7}\)
g, -3/13 . 6/8 + 7/13 . -3/8 + \(1\dfrac{3}{8}\)
Tìm a,b,c,d nhỏ nhất thuộc N
Saocho: \(\dfrac{a}{b}=\dfrac{15}{21};\dfrac{b}{c}=\dfrac{9}{12};\dfrac{c}{d}=\dfrac{9}{11}\)
Bài 1:Thực hiện phép tính (tính hợp lý nếu có thể)
1) \(\dfrac{8}{31}\) +\(\dfrac{-12}{25}\) +\(\dfrac{23}{31}\) +\(\dfrac{-13}{25}\)
2) \(\dfrac{1}{2}\) + \(\dfrac{3}{4}\) - ( \(\dfrac{3}{4}\) - \(\dfrac{4}{5}\) )
3) \(\dfrac{7}{3}\) . \(\dfrac{-5}{2}\) . \(\dfrac{15}{21}\) .\(\dfrac{4}{-5}\)
4)\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\) : ( \(-\dfrac{6}{7}\) )
5) (\(\dfrac{3}{29}\) - \(\dfrac{1}{5}\) ) . \(\dfrac{29}{3}\)
6) \(\dfrac{5}{7}\) . \(\dfrac{5}{11}\) + \(\dfrac{5}{7}\) . \(\dfrac{2}{11}\) - \(\dfrac{5}{7}\) .\(\dfrac{14}{11}\)
7)\(\dfrac{-11}{12}\) . \(\dfrac{1}{8}\) + \(\dfrac{11}{12}\) .\(\dfrac{-3}{16}\) -\(\dfrac{11}{12}\)
8) \(\dfrac{7}{4}\) . \(\dfrac{29}{5}\) -\(\dfrac{7}{9}\) .\(\dfrac{9}{4}\) +\(3\dfrac{2}{13}\)
giúp em
Bài 1: Thực hiện phép tính một cách hợp lí:
f) \(\dfrac{-5}{9}\) + \(\dfrac{8}{15}\) + \(\dfrac{-2}{11}\) + \(\dfrac{4}{-9}\) +\(\dfrac{7}{15}\)
Tính giá trị biểu thức :
1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)
2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)
4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)
5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)
6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)
7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)
9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)
10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)
11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)
12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)
13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)
14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)
15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)
16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)