Ta có: \(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|4-x\right|+\left|5-x\right|\ge x-1+x-2+0+4-x+5-x=6\).
Đẳng thức xảy ra khi x = 3.
Vậy Min A = 6 khi x = 3.
Ta có: \(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|4-x\right|+\left|5-x\right|\ge x-1+x-2+0+4-x+5-x=6\).
Đẳng thức xảy ra khi x = 3.
Vậy Min A = 6 khi x = 3.
1) a) Tính (3/4-81)(3^2/5-81)(3^3/6-81)..(3^2000/2003-81)
b) Tính giá trị của biểu thức: 6x^2+5x-2 tại x thõa mãn |x-2|=1
2) Tìm giá trị nguyên lớn nhất của biểu thức MN=15-x/5-x ?
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Tìm giá trị nhỏ nhất của biểu thức: A = \(\dfrac{x^2+1}{x^2+3}\)
Tìm giá trị nhỏ nhất của |x-1|+|x-2|+|x-3|+... +|x-2020|
tìm \(x\in Z\) để các biểu thức sau có giá trị lớn nhất và có giá trị nhỏ nhất :
1)A = \(\dfrac{1}{7-x}\) 2) B = \(\dfrac{8-x}{x-3}\)
3) C = \(\dfrac{27-2x}{12-x}\)
Bài 8 :
1 . Tìm giá trị lớn nhất của các biểu thức .
a. B = - ( x + 18/1273 ) - 183/124 .
b. C = 15/( x - 8)² + 4 .
2 . Tìm các giá trị của x để các biểu thức sau nhận giá trị dương .
a. A = x² + 6 .
b. B = ( 5 - x ) . ( x + 8 ) .
c. C = ( x - 1 ) . ( x - 2 ) / x - 3 .
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau :
a) \(A=\left|x-2017\right|+\left|x-2018\right|\)
b) \(B=\dfrac{x^2+12}{x^2+4}\)
Câu 1: Tính giá trị nhỏ nhất của biểu thức : \(E=\frac{5-3x}{4x-8}\left(x\in Z,x\ne2\right)\)