\(A=\left(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{44\cdot49}\right)\frac{1-3-5-7-...-49}{89}\\ A=\frac{1}{5}\left(\frac{5}{4\cdot9}+\frac{5}{9\cdot14}+\frac{5}{14\cdot19}+...+\frac{5}{44\cdot49}\right)\frac{1-\left(3+5+7+...+49\right)}{89}\\ A=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right)\frac{1-\frac{\left(49+3\right)\cdot24}{2}}{89}\\ A=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)\cdot\left(-7\right)\\ A=\frac{1}{5}\cdot\frac{45}{196}\cdot\left(-7\right)\\ A=\frac{-9}{28}\)