Violympic toán 7

TH

Tính giá trị biểu thức \(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right)\frac{1-3-5-7-...-49}{89}\)

H24
10 tháng 2 2020 lúc 17:15

\(A=\left(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{44\cdot49}\right)\frac{1-3-5-7-...-49}{89}\\ A=\frac{1}{5}\left(\frac{5}{4\cdot9}+\frac{5}{9\cdot14}+\frac{5}{14\cdot19}+...+\frac{5}{44\cdot49}\right)\frac{1-\left(3+5+7+...+49\right)}{89}\\ A=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right)\frac{1-\frac{\left(49+3\right)\cdot24}{2}}{89}\\ A=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)\cdot\left(-7\right)\\ A=\frac{1}{5}\cdot\frac{45}{196}\cdot\left(-7\right)\\ A=\frac{-9}{28}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HH
Xem chi tiết
GR
Xem chi tiết
CG
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
DH
Xem chi tiết
TG
Xem chi tiết
TN
Xem chi tiết