Ôn tập toán 6

TH

tính \(\frac{A}{B}\),biết rằng:

A=\(\frac{1}{1.300}\)+\(\frac{1}{2.301}\)+\(\frac{1}{3.302}\)+...+\(\frac{1}{101.400}\)

B=\(\frac{1}{1.102}\)+\(\frac{1}{2.103}\)+\(\frac{1}{3.104}\)+...+\(\frac{1}{299.400}\)

NH
11 tháng 4 2017 lúc 12:33

Ta có :

\(A=\dfrac{1}{1.300}+\dfrac{1}{2.301}+\dfrac{1}{3.302}+..................+\dfrac{1}{101.400}\)

\(299A=\dfrac{299}{1.300}+\dfrac{299}{2.301}+\dfrac{299}{3.302}+..................+\dfrac{299}{101.400}\)

\(299A=1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+.................+\dfrac{1}{101}-\dfrac{1}{400}\)

\(299A=\left(1+\dfrac{1}{2}+.................+\dfrac{1}{101}\right)-\left(\dfrac{1}{300}+\dfrac{1}{301}+.............+\dfrac{1}{400}\right)=C\)

\(\Rightarrow A=\dfrac{C}{299}\)

Lại có :

\(B=\dfrac{1}{1.102}+\dfrac{1}{2.103}+................+\dfrac{1}{299.400}\)

\(101B=\dfrac{101}{1.102}+\dfrac{101}{2.103}+...............+\dfrac{101}{299.400}\)

\(101B=1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+...............+\dfrac{1}{299}-\dfrac{1}{400}\)

\(101B=\left(1+\dfrac{1}{2}+...............+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+\dfrac{1}{103}+...............+\dfrac{1}{400}\right)=C\)\(\Rightarrow B=\dfrac{C}{101}\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{C}{101}:\dfrac{C}{299}=\dfrac{299}{101}\)

~ Chúc bn học tốt ~

Bình luận (1)
NN
13 tháng 6 2016 lúc 16:55

A=1

B=154526

Bình luận (0)