\(=\dfrac{\left(9+2\sqrt{5}\right)\cdot\sqrt{9-2\sqrt{5}}}{81-20}=\dfrac{\left(9+2\sqrt{5}\right)\cdot\sqrt{9-2\sqrt{5}}}{61}\)
\(=\dfrac{\left(9+2\sqrt{5}\right)\cdot\sqrt{9-2\sqrt{5}}}{81-20}=\dfrac{\left(9+2\sqrt{5}\right)\cdot\sqrt{9-2\sqrt{5}}}{61}\)
a) \(\dfrac{5-2\sqrt{ }5}{\sqrt{ }5-2}-\dfrac{11}{4+\sqrt{ }5} \)
b)\(\sqrt{9+4\sqrt{ }5-\sqrt{ }6-2\sqrt{ }5}\)
c)\(\sqrt{17-3\sqrt{ }32+\sqrt{ }17+\sqrt{ }32}\)
Giải PT:
a) -5x+7\(\sqrt{x}\) +12=0
b) \(\dfrac{1}{3}\)\(\sqrt{4x^2-20}\) +2\(\sqrt{\dfrac{x^2-5}{9}}\) -3\(\sqrt{x^2-5}=0\)
c) \(\sqrt{9x+27}+5\sqrt{x+3}-\dfrac{3}{4}\sqrt{16x+48}=5\)
d) \(\sqrt{49x-98}-14\sqrt{\dfrac{x-2}{49}}=3\sqrt{x-2}+8\)
Giải PT:
a) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
b) \(\sqrt{18x-9}-0,5\sqrt{2x-1}+\dfrac{1}{2}\sqrt{25\left(2x-1\right)}+\sqrt{49\left(2x-1\right)}=24\)
c) \(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\)
d) \(\sqrt{\dfrac{1}{3x+2}}-\dfrac{1}{2}\sqrt{\dfrac{9}{3x+2}}+\sqrt{\dfrac{16}{3x+2}}-5\sqrt{\dfrac{1}{12x+8}}=1\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{49x}{x+2}}-3\sqrt{\dfrac{x}{4x+8}}-\sqrt{\dfrac{x}{x+2}}-\sqrt{5}=0\)
Thực hiện phép tính:
1)A=\(\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right)\) . \(\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\)
2)B = \(\dfrac{1}{1 +\sqrt{2}}\) +\(\dfrac{1}{\sqrt{2}+\sqrt{3}}\)+.....+\(\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
3)C = \(\sqrt[3]{7+5\sqrt{2}}\) - \(\sqrt[3]{7-5\sqrt{2}}\)
4) D = \(\sqrt[3]{9+4\sqrt{5}}\)+\(\sqrt[3]{9-4\sqrt{3}}\)
giải phương trình
a, \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
b, \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
c, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
Cho A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
Rút gọn A
Rút gọn:
a. \(\left(\sqrt{5+2\sqrt{9\sqrt{5}-19}}-\sqrt{7-\sqrt{5}}\right):2\sqrt{\sqrt{5}-2}\)
b. \(\sqrt{5+2\sqrt{14\sqrt{5}-26}}-\sqrt{4\sqrt{5}-1+\sqrt{80+8\sqrt{5}}}\)
c. \(\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
1) Giải phương trình: a) \(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{91}}=0\) b) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z\right)\)
\(\dfrac{2\sqrt{X}-9}{x-5\sqrt{X}+6}-\dfrac{\sqrt{X}+3}{\sqrt{X}-2}-\dfrac{2\sqrt{X}+1}{3-\sqrt{X}}Tim\:X\:de\:C< 1\)