\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^6}\)
\(3A=3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^6}\right)\)
\(3A=1+\dfrac{1}{3}+...+\dfrac{1}{3^5}\)
\(3A-A=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^5}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^6}\right)\)
\(2A=1-\dfrac{1}{3^6}\Rightarrow A=\dfrac{1-\dfrac{1}{3^6}}{2}\)