Chương I - Căn bậc hai. Căn bậc ba

VN

Tính:

1) A=\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\)

2) B=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2006}+\sqrt{2007}}\)

TD
11 tháng 11 2017 lúc 22:19

Mình chỉ viết CT tổng quát thôi nha rồi bạn tự thay vào

a, \(\frac{1}{\sqrt{n}(n+1)+n\sqrt{n+1} }=\frac{1}{\sqrt{n(n+1)( }\sqrt{n}+\sqrt{n+1}} =\frac{\sqrt{n+1}-\sqrt{n} }{\sqrt{n}\sqrt{n+1} } =\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } \)

b,\(\frac{1}{\sqrt{n}+\sqrt{n+1} }=\frac{\sqrt{n+1}-\sqrt{n} }{1}= \sqrt{n+1}-\sqrt{n} \)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
NJ
Xem chi tiết
LM
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NK
Xem chi tiết
BB
Xem chi tiết
AG
Xem chi tiết