Đại số lớp 7

DT

tìm x,y,z biết:

a/ 2x=3y=5z và /x-2y/=5

b/ 5x=2y; 2x=3z và x.y =90

c/ \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

TH
31 tháng 1 2017 lúc 11:37

a)\(\left|x-2y\right|=5\Rightarrow\left[\begin{matrix}x-2y=5\\x-2y=-5\end{matrix}\right.\)

Từ \(2x=3y=5z\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)\(\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)

Nếu x-2y=5

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{5}{-5}-1\)

\(\Rightarrow\left\{\begin{matrix}x=-15\\y=-10\\z=-6\end{matrix}\right.\)

Nếu x-2y=-5

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\left\{\begin{matrix}x=15\\y=10\\z=6\end{matrix}\right.\)

Vậy có 2 bộ (x,y,z). Đó là (-15;-10;-6), (15;10;6)

Bình luận (0)
TH
31 tháng 1 2017 lúc 12:01

b) Từ \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\)\(\Rightarrow\frac{x}{6}=\frac{y}{15}\left(1\right)\)

\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\)\(\Rightarrow\frac{x}{6}=\frac{z}{4}\left(2\right)\)

Từ (1),(2)\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)

Đặt\(\)\(\frac{x}{6}=\frac{y}{15}=\frac{x}{4}=k\)

\(\Rightarrow\left\{\begin{matrix}x=6k\\y=15k\\z=4k\end{matrix}\right.\Rightarrow xy=90k^2\)

\(\Rightarrow90k^2=90\Rightarrow k^2=1\Rightarrow\left[\begin{matrix}k=1\\k=-1\end{matrix}\right.\)

Với k=1\(\Rightarrow\)\(\left\{\begin{matrix}x=6\\y=15\\z=4\end{matrix}\right.\)

Với k=-1\(\Rightarrow\left\{\begin{matrix}x=-6\\y=-15\\z=-4\end{matrix}\right.\)

Bình luận (4)

Các câu hỏi tương tự
QD
Xem chi tiết
QD
Xem chi tiết
NT
Xem chi tiết
QD
Xem chi tiết
NT
Xem chi tiết
HA
Xem chi tiết
PN
Xem chi tiết
MS
Xem chi tiết
HT
Xem chi tiết