a) |x - 3,5| + |4,5 - x| = 0
Mà \(\left|x-3,5\right|\ge0;\left|4,5-x\right|\ge0\)
\(\Rightarrow\begin{cases}\left|x-3,5\right|=0\\\left|4,5-x\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x-3,5=0\\4,5-x=0\end{cases}\)\(\Rightarrow\begin{cases}x=3,5\\x=4,5\end{cases}\)
vô lý vì x không thể cùng đồng thời nhận 2 giá trị khác nhau
Vậy không tồn tại giá trị của x thỏa mãn đề bài
b) |x2 - 2x| = x
+ Với \(\left[\begin{array}{nghiempt}x< 2\\x>-2\end{array}\right.\) thì |x2 - 2x| = 2x - x2
Ta có: 2x - x2 = x
=> 2x - x2 - x = 0
=> x.(2 - x - 1) = 0
=> x.(1 - x) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-1=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\), thỏa mãn \(\left[\begin{array}{nghiempt}x< 2\\x>-2\end{array}\right.\)
+ Với \(\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\) thì |x2 - 2x| = x2 - 2x
Ta có:
x2 - 2x = x
=> x2 - 2x - x = 0
=> x.(x - 2 - 1) = 0
=> x.(x - 3) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-3=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=3\end{array}\right.\), thỏa mãn \(\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=0\\x=1\\x=3\end{array}\right.\)