Đại số lớp 7

KS

Tìm x,y thuộc N biết: 36 - y2 = 8(x-2010)2

NT
19 tháng 3 2017 lúc 18:04

Ta có: \(36-y^2=8\left(x-2010\right)^2\Rightarrow y^2=36-8\left(x-2010\right)^2\)

+)Xét trường hợp y=0 \(\Rightarrow y^2=0\Rightarrow36-8\left(x-2010\right)^2=0\Rightarrow8\left(x-2010\right)^2=36\)

\(\Rightarrow\left(x-2010\right)^2=4,5\) (ko thỏa mãn vì \(x\in N\))

+)Xét trường hợp \(y\ne0\Rightarrow y^2>0\Rightarrow36-8\left(x-2010\right)^2>0\Rightarrow8\left(x-2010\right)^2>36\)

\(\Rightarrow\left(x-2010\right)^2>4,5\)

\(\left(x-2010\right)^2\) là số chính phương \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\Rightarrow36-y^2=8.0\Rightarrow y^2=36\)

\(\Rightarrow y=\sqrt{36}=6\)\(\Rightarrow x=2010;y=6\) (thỏa mãn)

Với \(\left(x-2010\right)^2=1\Rightarrow36-y^2=8\Rightarrow y^2=28\) (ko thỏa mãn)

Với \(\left(x-2010\right)^2=4\Rightarrow\)x-2010=2 hoặc x-2010=-2

\(\Rightarrow\left[{}\begin{matrix}x=2012\left(TM\right)\\x=2008\left(TM\right)\end{matrix}\right.\)

\(\Rightarrow36-y^2=8.4=32\Rightarrow y^2=4\Rightarrow y=\sqrt{4}=2\)(do y thuộc N)

Vậy \(\left\{{}\begin{matrix}x=2010\\y=6\end{matrix}\right.;\left\{{}\begin{matrix}x=2012\\y=2\end{matrix}\right.;\left\{{}\begin{matrix}x=2008\\y=2\end{matrix}\right.\)

Bài này đúng 100% tại mk học rồi, bạn hk tốt nha vui

Bình luận (3)

Các câu hỏi tương tự
MC
Xem chi tiết
H24
Xem chi tiết
GV
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
BC
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết